VÄGLEDNING

Vägledning i skogsbrandsläckning

2:a utgåvan 2020
Vägledning i skogsbrandläckning 2:a utgåvan

© Myndigheten för samhällsskydd och beredskap (MSB)
Enhet: RO-NB

Foto omslag: Leif Sandahl
Illustrationer: Per Hardestam där inte annat anges
Text: Rickard Hansen
Anders Nordlund och Leif Ekström har bidragit med texter i taktikavsnittet.
Leif Ekström har bidragit med material i avsnittet om avslut av räddningstjänst.
Fredrik Edlund har bidragit med material i avsnittet om grid-system.
Andreas Sundberg och Anders Montan har bidragit med material kring Kustbevakningsflygets resurser.
Johan Wahlström har bidragit med material i avsnittet om avlysning av vattendrag.

Publ nr: MSB1366 – maj 2020
Tidigare utgiven: maj 2019
ISBN: 978-91-7927-038-4
Förord
Vi har inom loppet av några år upplevt flera omfattande skogsbränder i Sverige. Klimatförändringar, med torrare förhållanden, medför att sannolikheten för stora och svårsläckta skogsbränder kommer att öka med tiden.

Därför finns det ett behov av att öka kunskaperna kring bekämpning av skogsbrand för att vi ska stå bättre rustade inför kommande skogsbrandssäsonger. Den förändrade riskbilden kommer också att öka behovet av metoder som är anpassade för de nya förhållandena.

Denna vägledning har sitt fokus på bekämpningen av skogsbranden, både på marken och från luften.

Målgrupp för vägledningen är främst kommunal räddningstjänst och då framför allt personal som aktivt deltar vid brandbekämpningen ute i skog och mark.

Se denna vägledning som ett levande dokument som kommer att uppdateras efterhand.

Cecilia Loosström
Avdelningschef
Myndigheten för samhällsskydd och beredskap
Innehåll

1. INLEDNING ... 7
 1.1 Vågledningens syfte .. 7
 1.2 Befintligt kunskapsmaterial ... 7
 1.3 Tillägg till 2:a utgåvan 2020 ... 8

2. SKOGSBRANDEN OCH DESS FÖRLOPP 9
 2.1 Skogsbrandens delar .. 9
 2.2 Olika typer av skogsbränder ... 10
 2.2.1 Torvbrand (brand i djupare markskikt) 10
 2.2.2 Låg löpbrand ... 10
 2.2.3 Hög löpbrand ... 10
 2.2.4 Toppbrand ... 11
 2.3 Extrema skogsbrandförlopp .. 11
 2.3.1 Vindburen toppbrand .. 11
 2.3.2 Brandpilysdominerat brandförlopp 12
 2.3.3 Brandvirvlar .. 14
 2.3.4 Flygbränder .. 14
 2.3.5 Sammanbränningar ... 15

3. ATT BEDÖMA EN SKOGSBRANDS SPRIDNING OCH UTBREDNING 16
 3.1 Vindens inverkan på brandens spridningshastighet 16
 3.2 Brandområdets utseende påverkas av vinden 17
 3.3 Brandhistorik ... 19
 3.4 FBP (Fire Behavior Prediction) 19

4. BEKÄMPNING AV SKOGSBRAND ... 21
 4.1 Direkt angrepp ... 21
 4.2 Indirekt angrepp .. 23

5. BEGRÄNSNINGSLINJER ... 25
 5.1 Slangsystem eller system med sprinkler
 5.1.1 Vattenanvändning .. 26
 5.1.2 Släckmedelsförråd ... 27
 5.2 Brandgator ... 27
 5.3 Skyddsaftbrännning ... 29
 5.3.1 Tändningsmetoder ... 31
 5.4 Andra metoder .. 32
 5.5 Flamlängd och val av bekämpningsmetod och begränsningslinje .. 33
 5.6 MSB:s förstärkningsresurs med skogsbrandsdepåer och
 högkapacitetspumpar ... 34
 5.6.1 Skogsbrandsdepåer på 13 platser i landet 34
 5.6.2 Högkapacitetspumpar för vattentransport 35

6. NATTARBETE ... 36
7. SÄKRING AV BRANDENS YTTEROMRÅDEN ... 37
 7.1 Praktiska råd ... 38
 7.2 Bevakning .. 39

8. AVSLUT AV RÄDDNINGSTJÄNST ... 40

9. BEKÄMPNING FRÅN LUFTEN ... 41
 9.1 Rekvisitering av flygande resurser ... 41
 9.2 MSB:s förstärkningsresurs med helikopter eller flygplan för skogsbrandsläckning ... 41
 9.2.1 Beredskapsnivåer .. 43
 9.3 Försvarsmaktens helikopterresurser .. 44
 9.4 Kustbevakningstlyget: sensorer och ledningsförmåga 45
 9.4.1 Luftmikokoordination, ACO (Air Coordinator) 47
 9.5 Internationella resurser ... 48
 9.6 Helikopteranvändning ... 48
 9.7 Att leda en enstaka helikopter ... 50
 9.8 Taktik vid vattenbombning ... 51
 9.8.1 Direkt och indirekt angrepp .. 51
 9.8.2 Frontalangrepp .. 52
 9.8.3 Flankangrepp ... 52
 9.8.4 Flygbränder, hotspots och plötsliga uppfammanden 53
 9.9 Övriga inverkande faktorer .. 53
 9.9.1 Fällningens genomträngning av grenverk 53
 9.9.2 Tillgång till vatten ... 54
 9.9.3 Räddningstjänstpersonalens arbete 54
 9.9.4 Rökpelaren .. 54
 9.10 Vattenbombande flygplan ... 56
 9.11 Ledning av flera helikoptrar och flygplan 56
 9.12 Säkerhetsaspekter när en helikopter används 57

10. SKOGSBRAND NÄRA BEBYGGELSE .. 59
 10.1 Offensiv taktik ... 60
 10.2 Defensiv taktik ... 60
 10.3 Åtgärder för att reducera risken för antändning 61

11. LÄGESBILD, DOKUMENTATION OCH KARTMATERIAL 63
 11.1 Lägesuppföljning .. 63
 11.2 GIS .. 64
 11.2.1 Copernicus ... 64
 11.2.2 EFFIS .. 65
 11.3 SiTaC ... 66
 11.4 MSB RIB Lupp ... 66

12. PERSONSKADERISKER .. 68
 12.1 Elrisker vid kraftledningsgata ... 68
 12.1.1 Säkerhetsavstånd ... 68
12.1.2 Om ledningen inte kan fränkopplas ... 70
12.1.3 Varning för automatisk återinkoppling! .. 70
12.1.4 Nedfallen ledning .. 70
12.1.5 Risk för explosion ... 71
12.2 Fallande träd ... 71
12.3 Glödgropar ... 71
12.4 Hög brandbelastning ... 72
12.5 Vattenbombning .. 72
12.6 Att bli omringad av branden ... 72
12.7 Värmeåterverkan och vätskebrist .. 73
12.8 Lämplig klädsel ... 74
12.9 Utse säkerhetsbefäl/-koordinator ... 74
12.10 Påverkan av brandräk ... 74
12.11 Uthållighet .. 75

13. MILJÖHÄNSYN ... 76

14. TAKTIK VID SLÄCKNING AV SKOGSBRAND ... 77
14.1 Steg 1. Läsa olyckan och göra en riskbedömning ... 77
14.1.1 Skadeplatsfaktorer .. 79
14.1.2 Händelseutveckling .. 83
14.1.3 Riskbedömning .. 83
14.2 Steg 2. Identifiera möjliga åtgärder ... 84
14.2.1 Resurstillgång .. 84
14.2.2 Möjliga åtgärder .. 86
14.3 Steg 3. Besluta om MMI och taktisk plan ... 87
14.3.1 MMI (Mål med insats) .. 87
14.3.2 Taktisk plan .. 87
14.3.3 Metodval ... 88
14.3.4 Säkerhet .. 88

BILAGA 1: BLANKETT, BAGÄRAN OM STÖD FRÅN MSB:S
FÖRSTÄRKNINGSRESURS HELIKOPTER ELLER FLYGPLAN 90

BILAGA 2: BLANKETT, BAGÄRAN OM STÖD FRÅN FÖRSVARSMAKTEN 93

BILAGA 3: IFYLLANDEBLANKETT, BAGÄRAN OM STÖD FRÅN FÖRSVARSMAKTEN
... 96

BILAGA 4: SITAC ... 99
1. Inledning

1.1 Vägledningens syfte

Myndigheten för samhällsskydd och beredskap (MSB) har tillsammans med ett antal kommunala räddningstjänster tagit fram denna vägledning för att

- stärka kunskaperna om de praktiska åtgärderna och överväganden man behöver göra vid en skogsbrandinsats
- stärka kunskaperna kring användande av flygande resurser i syfte att optimera användningen av resurserna
- stärka kunskaperna om brandbeteende vid framför allt extrema förhållanden
- stärka kunskaperna om riskreducerande åtgärder
- tillhandahålla erfarenhets- och kunskapsöverföring från tidigare inträffade skogsbränder.

Vägledningen består av ett antal områden som identifierats som prioriterade tillsammans med en referensgrupp bestående av:

Anders Nordlund, Räddningstjänsten Halmstad
Leif Ekström, Jämtlands Räddningstjänstförbund
Fredrik Edlund, Medelpads Räddningstjänstförbund
Lars-Göran Andersson, f.d. Räddningstjänsten Sävsjö
Per-Erik Jonsson, Brandkåren Norra Dalarna

Områden som inte berörts i denna version kommer att inkluderas i kommande versioner. Vägledningen är alltså inte ett heltäckande dokument vad gäller släckning av skogsbrand.

Kapitel 14 i denna vägledning (taktik vid släckning av skogsbrand) har en sammanfattande roll och avser att visa på en röd tråd för de olika komponenterna i vägledningen.

Stabs- och ledningsmetodik vid skogsbränder berörs inte i denna vägledning.

1.2 Befintligt kunskapsmaterial

Befintligt kunskapsmaterial om släckning av skogbrand finns framför allt på två ställen:
MSB:s webbaserade fortbildning om skogsbrand på http://fortbildning.msb.se/
läroboken Skogsbrandsläckning (SRV, 2003).
Framför allt läroboken Skogsbrandsläckning har ett antal år på nacken och är i behov av revidering, tillägg etc. Områden som behandlas i denna vägledning är därför tänkt att ersätta motsvarande material i läroboken. Övrigt material i läroboken såsom grundläggande brandbeteende, väder etc. gäller tills vidare.

1.3 Tillägg till 2:a utgåvan 2020

I denna utgåva har följande avsnitt eller områden tillkommit:

- Avlysnings av allmän farled (Taktik vid släckning av skogsbrand)
- Grid-system (Lägesbild, dokumentation och kartmaterial)
- Kustbevakningsflygets förmåga
- ACO, Air Coordinator
- MSB RIB Lupp
- MSB:s förstärkningsresurser med skogsbrandsdepåer och högkapacitetspumpar

Revideringar och tillägg har gjorts inom följande avsnitt eller områden:

- Direkt angrepp
- Slangs system eller system med sprinkler
- Nattarbete
- MSBs flygande resurser
- Användning av värme kamera (Säkring av brandens ytterområden)
- Taktik vid vatten bombning
- Skogsbrand nära bebyggelse
- Personskaderisker

I 2:a utgåvan har även en del mindre redaktionella ändringar utförts.

Förutom tidigare samarbetande aktörer har även Andreas Sundberg och Anders Montan från Kustbevakningen samt Johan Wahlström från Sjöfartsverket bidragit med material till 2:a utgåvan.
2. Skogsbranden och dess förlopp

2.1 Skogsbrandens delar

Begreppen för skogsbrandens olika delar måste vara kända för samtliga inblandade vid en skogsbrand. De behövs som referens vid dirigering av personal, helikoptrar etc.

Flygbrand
En brand utanför den huvudsakliga branden som kan ha uppkommit genom att glödande partiklar fortsatt med vinden i brandens spredningssättning och hamnat på tillhackligt torrt bränsle.

Front
Den främre och mest svårhäckta delen av skogsbranden. Spredningssförmågan och effektutvecklingen är här som störst.

Flygel
De yttre delarna på frontens kanter. Effektutvecklingen är här något mindre än vid brandfronten.

Vänster flank

Avbränd yta

Höger flank
Omvälvande mellan flygel och rök.

Startplats

Rygg
Bakre delen av skogsbranden är lättast att släcka. Spredningsförmågan är mindre här.

Vindriktning

Elßband
Det brinnande området runt det avbrända området. Djupet på elßbanet bestäms av brandens intensitet, ju högre intensitet desto större djup. Typen av bränsle kommer här att vara en stor avgörande faktor. En gräskal brand kommer att ha mindre djup på elßbanet jämfört med en brand i tjockare bränsle.

Figur 1. Skogsbrandens delar. Illustration: Christina Jonsson.
Brandområdets utseende kommer till stor del att bero på den rådande vindstyrkan och vindriktningen. Vid en skogsbrand i enhetlig vegetation och topografi och med tilltagande vind kommer brandområdet att allt mer anta formen av en ellips.

2.2 Olika typer av skogsbränder

Det är viktigt att känna till de fyra olika huvudtyperna av skogsbränder samt deras beteende och spridningshastigheter för att kunna bekämpa dem så effektivt som möjligt.

De värden för spridningshastigheter som anges nedan i avsnittet är exempel; det finns skogsbränder som brinner snabbare eller långsammare. Indelningen i kategorier nedan är gjord utifrån de olika bränsleskikten, men när det gäller spridningshastigheter kommer även väder- och terrängfaktorer att spela in. I de flesta fall kommer vinden att ha en starkt inverkande effekt.

2.2.1 Torvbrand (brand i djupare markskikt)

Torvbrand är en glödbrand som kan uppstå i syrefattig miljö under marknivån sedan en låg eller hög löpbrand brunnit över. Branden sprids via rötter och död vegetation.

En brand kan gå mycket djupt ner, beroende på hur tjockt lagret av död vegetation är. Det finns risk att torvbranden övergår till löpbrand igen. En torvbrand kan fortga under en mycket lång period och spridningen är långsam, ofta enbart enstaka centimeter per timme. Torvbränder är endast möjliga i skogsmarker som har torvmark eller under ett tjockt lager av torv i moar, exempelvis i en äldre granskog.

2.2.2 Låg löpbrand

2.2.3 Hög löpbrand

Hög löpbrand är brand i markvegetationen, i lägre grenar och i enstaka trädtoppar. Det som skiljer en hög löpbrand från en toppbrand är att vid en hög löpbrand involveras enbart enstaka trädtoppar och den är starkt beroende av branden i markvegetationen. Exempel på intervall för spridningshastighet är 10–20 meter/minut.
2.2.4 Toppbrand

Toppbränder är den typ av brand som vi förknippar med extrema skogsbrandförlopp och de återfinns både vid de vindburna toppbränderna och vid det brandplymsdominerade brandförloppet. Begreppet kronbrand förekom även som beteckning på denna typ av brand.

OBS! När en brand sprids vidare till ett högre bränsleskikt, exempelvis när en låg löpbrand övergår till en hög löpbrand, kommer branden att genomgå en accelerationsfas med tilltagande spridningshastighet och effektutveckling.

2.3 Extrema skogsbrandförlopp

Extrema skogsbrandförlopp omfattar som regel brand i de högre bränsleskikten och kan delas in i två olika typer av brandförlopp:

- vindburna toppbränder
- brandplymsdominerat brandförlopp.

Vid dessa två typer av brandförlopp kommer dessutom fenomen såsom brandvirvlar och flygbränder att inträffa.

2.3.1 Vindburen toppbrand

Den vindburna toppbranden kräver framför allt starka vindar och en kontinuitet i bränslet - såväl vertikalt som horisontellt - för att kunna uppstå. Vid svagare vind eller avbrott i bränslekontinuiteten kommer brandspridningen i horisontaled i de högre bränsleskikten att avstanna och endast enstaka träd omfattas. En vindburen toppbrand är en skogsbrand där flamstrålning och konvektion antänder de högre bränsleskikten med hjälp av den kraftiga vinden.
Figur 2. Vindburen toppbrand kan uppkomma när vindstyrkan ökar och brandgaser från brinnande träd antänder angränsande trädtoppar.

Branden har en tydlig spridningsriktning och ett brandområde av avsmalnad, ellipsformad karaktär. Vid denna typ av skogsbrand förekommer det ofta brandvirvlar och flygbränder; dock är kastlängden på flygbränderna inte lika lång som vid den brandplymsdominerade varianten.

Vanligtvis skiljer man på två former av vindburna toppbränder. Den första formen är toppbränder där brandspridningen i de högre bränsleskiktet är beroende av branden i de lägre bränsleskiktet, och skulle branden i de lägre bränsleskiktet avstanna eller avta kommer även branden i de högre bränsleskiktet att avstanna. I den andra formen är effektutvecklingen från branden i de högre bränsleskiktet så hög att den är helt oberoende av branden i de lägre bränsleskiktet.

2.3.2 Brandplymsdominerat brandförlopp

Figur 3. För att ett brandplymsdominerat brandförlopp ska uppstå krävs en stor mängd bränsle och mycket låg bränslefukthalt.

Det brandplymsdominerade brandförloppet sprids på två olika sätt:

dels genom konvektion och flamstrålning från brandplymen, dels med hjälp av starka nedåtriktade vindar, som ger upphov till brandspridning i olika riktningar. Uppkomna vindhastigheter kan bli mycket höga och kan välta eller knäcka träd.

Det brandplymsdominerade brandförloppet fortgår under maximalt ett antal timmar och upphör därefter. Ofta startar denna typ av brandförlopp vid tidig eftermiddag när den relativu luftfuktigheten är som lägst, temperaturen är som högst, tillgången till torrt bränsle som störst och sannolikheten för instabila luftmassor är som störst.
Den höga brandplymen innebär ökade kastlängder på flygbränder i och med att plymen (och brinnande eller glödande material) når högre upp i atmosfären.

Eventuella släckförsök vid det brandplymsdominerade brandförloppet kommer med största sannolikhet att vara förgäves och alltför riskfyllt. Det bästa är därför att låta markpersonalen retirera och invänta att brandförlopet upphör och ett mera gynnsamt väderläge uppstår. Eventuellt kan dock lufthurna resurser med större vattenkapacitet sättas in för att exempelvis skydda bebyggelse.

Räddningstjänstpersonal på plats får en förvarning utifrån brandplymens utseende och utveckling, och färgförändringar, kraftig tillväxt och turbulenta rörelser är tydliga varningar. Brandplymen kan med fördel bevakas från luften, där eventuella förändringar syns tidigt och tydligt. Eventuella brandvirvlar i området kan tyda på instabila luftmassor och mycket låga fukthalter kan även det tjäna som varningssignal samt beaktas vid en riskbedömning.

2.3.3 Brandvirvlar

Brandvirvlar kräver som regel instabila luftmassor och hög brandbelastning för att uppstå. Brandvirvlar i sig medför ett kraftigt insug av luft vid marknivån, trombliknande vindar, ökad effektutveckling på branden, ökad spridningshastighet och flygbränder. Största risken med brandvirvlar är de flygbränder som de sprider i terrängen på kortare avstånd från brandfronten.

2.3.4 Flygbränder

En flygbrand är en skogsbrand som uppstått utanför den huvudsakliga brandytan och som kan ha uppstått genom att brinnande eller glödande material föRTS med vinden i brandens spridningsriktning. Förekomsten av flygbränder är vanligtvis en tydlig indikator på extrema skogsbrandförlopp. Eftersom flygbränder kraftigt kan förvärra brandförloppet och försvåra släckningsarbetet ska bekämpning av dessa prioriteras. Flygande resurser kan med fördel användas vid bekämpning av flygbränder.

Flygbränderns kastlängd kan variera starkt från några få meter till flera kilometer. Flygbränder kan uppstå vid bränder i de lägre bränsleskikten men är desto vanligare vid bränder i de högre bränsleskikten samt bränder i högar med avverkningsrestor.
2.3.5 Sammanbränningar

Fenomenet kan inträffa vid en enstaka skogsbrand - där separata brandfronter är positionerade mot varandra – eller vid skogsbränder och bränningar som resulterat i flygbränder på kortare avstånd från brandfronten och som därefter brunnit samman med skogsbranden med våldsam kraft.
3. **Att bedöma en skogsbrands spridning och utbredning**

Nedan följer ett antal enkla metoder eller tumregler för hur skogsbrandens utbredning eller förlopp grovt kan uppskattas och bedömas. På grund av metodernas enkelhet och att de inte ställer några större krav på vana eller erfarenhet lämpar de sig väl för brandbefäl, oavsett kunskapsnivå, och för användning ute på plats i ett inledande skede av branden.

3.1 Vindens inverkan på brandens spridningshastighet

I framför allt södra Europa används en tumregel där brandfronten antas ha en spridningshastighet på 3 % av vindhastigheten. Tumregeln tar dock inte hänsyn till ändringar i vegetationen eller lutningen på terrängen.
Tabell 1. Exempel på brandfrontens spridningshastighet och framdrift vid olika vindhastigheter.

<table>
<thead>
<tr>
<th>Hastighet</th>
<th>Brandfrontens framdrift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meter vid följande tidsintervall</td>
</tr>
<tr>
<td>Kilometer/timme</td>
<td>Meter/sekund</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td>11</td>
</tr>
<tr>
<td>50</td>
<td>14</td>
</tr>
<tr>
<td>60</td>
<td>17</td>
</tr>
<tr>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>80</td>
<td>22</td>
</tr>
<tr>
<td>90</td>
<td>25</td>
</tr>
</tbody>
</table>

3.2 Brandområdets utseende påverkas av vinden

Vinden kommer att starkt påverka utseendet på brandområdet. Vid vindhastigheter som understiger 0,3 meter/sekund kommer brandområdet att ha en cirkulär form med likartad spridning i alla riktningar, förutsatt att topografi och vegetation är likartad i området.

Vid lägre vindhastigheter kommer branden - förutom i vindriktningen - även att spridas mot vindriktningen vid brandens rygg samt i ännu större utsträckning ut från flanker och flyglar. Med ökad vindhastighet kommer den största utbredningen ske vid brandfronten. För att kunna bedöma brandens utbredning i vindriktningen är spridningskonens vinkel av stort intresse

Förslagsvis kan du som brandbefäl ta fram en transparent mall med olika spridningskonor som sedan läggs på en karta med lämplig skala.
Tabell 2. Spridningskonens vinkel vid olika vindhastigheter.

<table>
<thead>
<tr>
<th>Vindhastighet (meter/sekund)</th>
<th>Spridningskonens vinkel (grader)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8–10</td>
<td>15</td>
</tr>
<tr>
<td>11–20</td>
<td>10</td>
</tr>
</tbody>
</table>

3.3 Brandhistorik

Det är inte nödvändigt att veta de exakta väderförhållanden vid en tidigare brand, FWI-värden (Fire Weather Index) etc. utan enbart i stora drag. Får vi en sommar med likartade förhållanden som en tidigare sommar kan det till exempel vara bra att dra sig till minnes brandbeteendet i det specifika området. Fördelen med brandhistorik är att väderaspekten kopplas samman med bränsleaspekten, förutsatt att vegetationstypen och mängden vegetation inte har förändrats i någon större utsträckning i området. I takt med att skogsbränder blir allt mer frekventa kommer detta verktyg dessutom att bli allt viktigare.

3.4 FBP (Fire Behavior Prediction)

Med hjälp av den kanadensiska modellen FBP (Fire Behavior Prediction) kan även spridningshastigheter tas fram. Ingångsvärden är bland annat en rad indexvärden från FWI (www.smhi.se/brandrisk) men även parametrar såsom bränsletyp, vindhastighet, vindriktning, lutningsgrad, lutningens riktning, höjden över havet etc. Värden som sedan kan utläsas är bland annat spridningshastighet och avbrunnen yta (utseendet på brandområdet).
4. Bekämpning av skogsbrand

Den huvudsakliga brandbekämpningen sker på marken och det är här som branden till slut konstateras vara släckt.

Vid mindre skogsbränder eller skogsbränder med låg brandintensitet bekämpas branden vanligtvis med ett så kallat direkt angrepp, där räddningstjänstpersonalen går direkt på eldbandet. Vid skogsbränder med hög brandintensitet eller spridningshastighet utförs begränsningslinjerna på avstånd från eldbandet genom ett så kallat indirekt angrepp. Vid större skogsbränder kan räddningstjänsten komma att använda både direkt och indirekt angrepp. I de mera lågintensiva avsnitten av en skogsbrand används då direkt angrepp och längs de högintensiva avsnitten indirekt angrepp.

4.1 Direkt angrepp

Direkt angrepp innebär att räddningstjänstpersonalen går direkt på eldbandet. Metoden används vid mindre skogsbränder och skogsbränder med låg brandintensitet eller vid låg spridningshastighet.

Fördelarna med denna metod är att branden som regel förhindras att spridas till de högre bränsleskikten, att skyddsavbränning (som kan innebära säkerhetsrisker) inte behöver genomföras och att storleken på det avbrända området minimeras.

Nackdelarna är att personalen utsätts för rök och hetta, att eventuella brandbarriärer inte alltid kan utnyttjas eftersom det är eldbandets läge som styr placeringen av begränsningslinjen samt att en flank eller flygel helt plötsligt kan bli en brandfront vid en vindkantering. Tänk även på behovet av att säkra brandens ytterkanter för att undvika att återantändning sker.

När så är möjligt genomförs i första hand direkt angrepp, eftersom detta har störst chans att lyckas och vid eventuella uppflammanden kan räddningstjänstpersonalen snabbt ta sin tillflykt till avbrändt, svart område som ligger i direkt anslutning. Sträva då efter att söka sig till öppna platser för att minimera risken för fallande, brandskadade träd.
I samband med det direkta angreppet kan även en omedelbar åtgärd vara att genomföra en släckinsats mot det mest intensiva avsnittet längs eldbandet, vilket bekämpas separat för att hålla branden nere och vinna tid för att hinna skapa begränsningslinjer.

Själva angreppet kan gå till på tre olika sätt:

1. Räddningstjänstpersonalen börjar angreppet vid brandens rygg (1), fortsätter längs den mest kritiska flanken (2) och brandfronten (3), går vidare till andra flanken (4) och avslutar vid ryggen (5).

 ![Figur 5. Direkt angrepp med ett brandfordon.](image1)

2. Räddningstjänstpersonalen börjar angreppet vid brandens rygg (1), fortsätter på ömse sidor av branden längs flankerna (2) och flyglarna (3) för att sedan avsluta vid brandfronten (4). Eventuellt kan räddningstjänstpersonalen – om situationen bedöms som säker – börja angreppet vid brandfronten direkt.

 ![Figur 6. Direkt angrepp då man har flera brandfordon till hands.](image2)

Figur 7. Mobilt angrepp.

I vissa lägen går det inte att påbörja det direkta angreppet i ryggen på grund av terrängens beskaffenhet eller hotade värden i brandfrontens spridningsriktning. Det direkta angreppet får då påbörjas vid ett mera kritiskt avsnitt av branden och det är viktigt att säkerställa att branden ej kringgår begränsningslinjen.

4.2 Indirekt angrepp

Indirekt angrepp innebär att begränsningslinjerna skapas en längre sträcka från branden. Metoden används vid större skogsbränder med hög effektutveckling och snabba spridningshastigheter.

Fördelarna är att personalen inte utsätts för hetta och större mängder rök, och att man kan utnyttja naturliga brandbarriärer (sjöar, vägar etc.) vid konstruktionen av begränsningslinjerna.

Nackdelarna är att angreppet innebär längre begränsningslinjer samt ökad tidsåtgång. Långa begränsningslinjer innebär ökat antal platser där branden riskerar att ta sig förbi begränsningslinjen samt att den ökade tidsåtgången innebär en risk

Det indirekta angreppet kan med fördel kompletteras med skyddsavbränningar när väl brandmännen iordningställt begränsningsslinjerna. Skyddsavbränningar syftar till att bredda begränsningsslinjerna, säkerställa att de håller vid en sammanbränning med själva branden och för att bli av med potentiella riskkällor i form av vegetation som ännu inte är utbrunnen.

Vid många större och intensiva skogsbränder använder räddningstjänsten både direkt och indirekt angrepp. I ryggen och längs flankerna används direkt angrepp och längs flyglarna och brandfronten indirekt angrepp. Vidare kan räddningstjänsten vara tvungen att använda indirekt angrepp på en aktiv skogsbrand under dagen, men skifera till direkt angrepp under natten när branden är mindre aktiv.

Metoden kan med fördel användas längs flanker och flyglar vid högintensiva skogsbränder där det direkta angreppet inte är möjligt. I dessa fall invantas ofta bättre väderförhållanden innan angrepp på brandfronten genomförs. Tänk även på risken för att en flank eller flygel helt plötsligt kan bli en brandfront vid en vindkantring.
5. Begränsningslinjer

Begränsningslinjer kan utföras på olika sätt, bland annat beroende på vattentillgången. Vanligtvis utförs begränsningslinjer i form av slangsystem, brandgator och i kombination med skyddsavbränning. Metoderna utesluter inte varandra; bra resultat kan uppnås om man kombinerar dem.

Begränsningslinjerna bör vara så raka som möjligt, för att man lättare ska kunna överblicka dem och kontrollera att de håller. Vid skogsbrand i en sluttning placeras begränsningslinjen på motsatt sida av krönet. Man har då vindriktningen på sin sida samt att brandens spridningshastighet i nedåtsluttande terräng (negativ topografi) är låg.

5.1 Slangsystem eller system med sprinkler

Vid det direkta angreppet används med fördel vatten på grund av dess kylande effekt på flammorna. När det gäller användning av vatten vid det indirekta angreppet är fördelarna med vatten inte lika stora i och med avdunstningen av vattnet. I takt med ökande lufttemperatur kommer dessutom applicering av vatten längs terrängavsnitt att ha en avtagande effekt.

OBS! Alla skogsbränder måste inte omringas helt av ett slangsystem. Exempelvis kan brandgator ensamt utgöra begränsningslinje i vissa terrängavsnitt.

Ytterligare en variant är att använda ett mobilt sprinklersystem, som kan läggas ut i skogsterrängen för att skapa en våt begränsningslinje.

Vid placeringen av slangsystemet eller sprinklersystemet bör befintliga och naturliga brandbarriärer i form av vägar och stigar utnyttjas så långt det är möjligt.
Detta kommer att underlättja och snabba på arbetet. Begränsningslinjerna kan också, om det behövs, dras genom mera finfördelat bränsle som gräs och buskar. Undvik dragningskolk genom bränsle av kompakt natur för att minska riskerna att branden hoppar över begränsningslinjen.

En begränsningslinje bestående av slangsystem eller sprinklersystem ute i terrängen ska inte betraktas som en fullödig begränsningslinje, såvida den inte går genom mycket lätt bränsle eller att branden brunnit fram till begränsningslinjen och därefter släckts av. Begränsningslinjen ska som regel kompletteras med en brandgata alternativt att en skyddsavbränning genomförs i anslutning till begränsningslinjen.

Observera att det kan uppstå tämligen stora tryckskillnader i slangsystemet beroende på höjdskillnader i terrängen. I de fall där pumpen återfinns på en lägre punkt kan eventuellt tryckstegringspump behövas. I de fall där pumpen återfinns på en högre höjd kan motsatt problematik uppstå, dvs alltför högt tryck i slangsystemet.

5.1.1 Vattenanvändning

Spridd stråle appliceras i svepande rörelser på brandens bas och på bränslet alldeles intill eldbandet, inte direkt på flammorna. Sluten stråle används vid skogsbränder som nått högt upp i vegetationen, till trädgrenar etc.

Strålföraren bör tänka på att vattenstrålen inte ska sprida glöd från ett avbränt område till ett ännu inte brandpåverkat område. Bäst är om strålföraren står på en yta som inte är brandpåverkad och sprutar mot den brandpåverkade ytan. Räddningstjänstpersonalen kan förses med verktyg som yxor, skyfflar etc. för att hjälpa strålföraren i släckningsarbetet.

Vattenåtgången beror på hur vattnet sätts in vid bekämpningen. När vattnet används för att skapa en begränsningslinje går det åt ca 1 liter/m². Vid direkt angrepp mot eldbandet går det åt 3-5 liter/m², vilket motsvarar en nederbörd på 3–5 mm. Observera dock att det påförda vattnet avdunstar med tiden. Vattenåtgången hänger också samman med vilken typ av bränsle som finns i området.

Man kan använda slangar av mindre dimension för att minimera mängden vatten som ska fylla upp slangsystemet samt för att minska arbetsbelastningen för räddningstjänstpersonalen. Men om man inte får fram tillräcklig mängd vatten bör
man ändra slangdimensionerna till en grövre dimension. Detta innebär dock att mer vatten går åt till att fylla upp slangsystemet.

5.1.2 Släckmedelstillsatser

Skumvätskeinblandning kan leda till negativ miljöpåverkan på både vattendrag och växtlighet och rekommenderas därför inte för användning vid bekämpning av skogsbrand.

Så kallade långtidsverkande retardenter är en grupp släckmedelstillsatser som är mer långtidsverkande än skum – upp till flera timmar. De används huvudsakligen vid indirekta angrepp och kan tillföras med hjälp av markfordon eller flygplan. Ämnenas miljöpåverkan är dock oklara och är under utredning.

5.2 Brandgator

Vid konstruktion av en brandgata i terrängen bör personal med motorsågar gå i täten för att kapa, ta ner grenar, röja etc. samt snitsla sträckningen. Efterföljande personal jobbar med att få bort det brännbara materialet på marken med olika typer av handverktyg. Blanda inte material: bränt material ska in i brandområdet och grönt material ska till den obrända delen. Skogsmaskiner eller schaktmaskiner kan med fördel användas eftersom arbetet med brandgator är tungt och krävande.

Det är extra viktigt att utnyttja befintliga brandbarriärer, för att slippa göra breda, arbetskrävande brandgator. Konstruktionen bör alltid börja i en ankarpunkt, gå runt branden på ömse sidor och avslutas framme vid brandfronten.

Brandgatans bredd anpassas efter vindhastighet, slutningens lutningsgrad, bränslet och brandens effektutveckling. En tumregel är att brandgatan ska vara minst 1,5 gånger den omgivande växtlighetens höjd. Vid extrema brandförlopp bör brandgatan vara mer än 2 gånger växtlighetens höjd. Var beredd att öka på brandgatans bredd ytterligare vid ökad vindhastighet och flamhöjd. Dessa tumregler gäller en brandgata som ska stå emot brandfronten och flyglarna. Längs
flanker och rygg kan räddningstjänstpersonalen minska bredden på brandgatan, många gånger kan det i dessa fall räcka med betydligt smalare brandgator.

För att bättra på brandgatans effektivitet appliceras vatten på ömse sidor av den. Gödelspridare kan här vara till stor hjälp. Man kan även genomföra skyddsavbränning, och denna metod kan med fördel användas eftersom det annars skulle krävas mycket stora, arbetskrävande bredder på brandgatorna (vid skyddsavbränning ska inte bränslet på brandsidan våtas).

OBS! Hela brandgatans bredd behöver inte gå ner till mineraljorden utan det räcker som regel med ett fåtal decimeter upp till en meter. Delen som går ner till mineraljorden syftar till att förhindra att eventuella glödbränder i markskiktet tar sig förbi brandgatan.

Figur 8. Brandgatans struktur och utseende. Illustration: Christina Jonsson.

Se till att brandgatan också omfattar eventuella flygbränder som uppstått framför branden. Undvik dock att ringa in flygbränderna genom separata brandgator,
eftersom det kräver mer tid. Arbetet blir dessutom svårare att övervaka eftersom personal kommer att befina sig mellan två bränder, vilket är en säkerhetsrisk.

5.3 Skyddsavbränning

Det är dessutom viktigt att skyddsavbränningen är avslutad och släckt innan skogsbrandens brandfront nått fram, eftersom all räddningstjänstpersonal bör vara inriktad på den annalkande skogsbranden och inte på skyddsavbränningen när brandfronten närmar sig.

Skyddsavbränningar används som regel för att bekämpa skogsbränder med hög effektutveckling och hög spridningshastighet eller vid ett indirekt angrepp. Chansen att lyckas med en skyddsavbränning är störst vid lättare och homogent bränsle. Utnyttja gärna dygnets variationer av den relativa fuktigheten när det gäller att välja tidpunkt för bränning. Vid bränning i tyngre bränsle ökar risken för
att flygbärare uppstår samt att tiden det tar för branden att brinna ut ökar och kräver ökade släckresurser. Vid varierande typ av vegetation ökar risken för att inte all vegetation brinner fullt ut, vilket kan innebära att dessa terrängavsnitt istället antänds av skogsbranden som då kan ta sig förbi bränningen och begränsningslinjen.

Chansen till en lyckad skyddsavbränning minskar med ökad vindhastighet, skiftande vindriktning och minskad fukthalt (risken för flygbärare ökar då). Vid situationer när instabila luftmassor föreligger kan en skyddsavbränning komma att provocera skogsbranden och resultera i ett Oberäkneligt brandförlopp. Detta kan då resultera i brandvirvlar och våldsamma rusningar av branden.

Skyddsavbränning ställer stora krav på förberedelser, organisation och koordination. Säkerheten måste ha högsta prioritet. En bränning ska inte genomföras om det inte finns tillräckliga släckresurser för att hålla den under kontroll.

Ett måste vid en skyddsavbränning är god kommunikation. Detta inbegriper givetvis personalen som utför bränningen, men även att etablerad radio- eller telefonkontakt finns med angränsande enheter som då kan varnas vid ett eventuellt förvärrat brandförlopp, ifall bränningen har hoppat över den tänkta begränsningslinjen etc. Angränsande enheter bör i förväg vara informerade om att bränning ska genomföras i området och om tidpunkten när bränningen startar. Detta eftersom brandförloppet och släckningsarbetet för angränsande enheter kan komma att påverkas.

Man bör utse ett brandbefäl som ansvarar för bränningsoperationen och säkerheten, och som inte själv deltar i bränningen utan koncentrerar sig på den övergripande övervakningen.

Det är lämpligt att denna operation får utgöra en egen sektor. Uppgiften är att kontinuerligt övervaka både branden och den personal som deltar, för att undvika att någon blir innesluten av brand.

För att slippa utsätta markpersonalen för onödiga risker kan helikopter sättas in vid dessa operationer, både som backup vid en snabb släckinsats på ett kritiskt terrängavsnitt och för att tända terrängavsnitten närmast skogsbranden med så kallad helitorch.
5.3.1 Tändningsmetoder

Fyra tändningsmetoder beskrivs nedan. Vid all typ av skyddsavbränning ska inblandad räddningstjänstpersonal eller annan bränningspersonal vara underrättad i förväg om var närmaste reträttplats finns. Det är även viktigt att koordination och kommunikation fungerar på ett bra sätt mellan den räddningstjänstpersonal eller bränningspersonal som bränner.

Den första metoden används när det blåser mot branden från begränsningslinjerna. Personalen utgår från en ankarpunkt, dvs. en utgångspunkt som samtidigt också är en befintlig brandbarriär som till exempel en väg, en bergssida eller ett vattendrag, och antänder växtligheten närmast begränsningslinjen. Om någonting skulle gå snett ska de som bränner snarast bege sig till begränsningslinjen, som då betraktas som reträttplats.

När det blåser från branden mot begränsningslinjerna används nästa metod. Den förste brandmanen eller bränningspersonen utgår från ankarpunkten och antänder växtligheten närmast begränsningslinjen, därefter kommer nästa person och antänder området utanför det redan avbrända.

Figur 11. Tändning i halvcirkelrörelse.

Den fjärde metoden kallas punktvis tändning. Brandmännen eller bränningspersonalen tänder i ett punktmönster längs terrängen som gränsar till begränsningslinjen och efter ett tag brinner punkterna samman.

Figur 12. Punktvis tändning.

5.4 Andra metoder

Även andra metoder kan tillämpas såsom myrtrampning, där man med hjälp av till exempel en bandvagn kan trycka ner bränslet i vattnet på myrar. Även vid torra
förhållanden kan samma åtgärd få effekt eftersom bandvagnen då gör bränslet mera kompakt och svårantändligt.

Vid torvbränder kan även så kallade släckspett användas för att komma åt den djupt liggande branden.

Vid en lågintensiv skogsbrand i lättare bränsle såsom gräs kan en lövblås användas vid släckningen. Säkerställ då att brandområdet säkras upp. Metoden lämpar sig enbart vid bränder med lägre flamhöjder och vid användning måste riktningen på luftflödet hela tiden beaktas så att exempelvis inte glödande material trycks i oönskad riktning.

5.5 Flamlängd och val av bekämpningsmetod och begränsningslinje

Flamlängden kan användas för att bedöma vilka åtgärder som krävs för att stoppa branden. När flamlängden är under 1 meter bedöms vanligtvis att det går att genomföra ett direkt angrepp mot brandfronten eller mot flyglarna. En enkel, handgjord brandgata kommer då att hålla.

Figur 13. Flamlängd.

Vid en flamlängd på 1–2,5 meter blir branden alltför intensiv för ett direktt angrepp mot brandfronten med handutrustning. Det är dessutom tveksamt om en provisorisk brandgata kommer att hålla. Ytterligare resurser kan då behövas som till exempel skördemaskiner, schaktmaskiner, vattenbombande helikoptrar etc.

En flamlängd på 2,6 meter utgör den övre gränsen för användning av slangsystem.
När flamlängden når 2,5–3,5 meter börjar man få extrema skogsbrandförlopp med höga löpbränder, toppbränder och flygbränder. Släckförsök med direkt angrepp mot själva brandfronten är då troligen förgäves.

Med en flamlängd på mer än 3,5 meter kommer alla släckförsök mot brandfronten att vara förgäves, men man kan fortfarande göra släckinsatser mot ryggen, flankerna och eventuellt mot flyglarna.

5.6 **MSB:s förstärkningsresurs med skogsbrandsdepåer och högkapacitetspumpar**

När kommunens och regionens egna resurser inte räcker till vid en olycka, kris eller annan större händelse, har MSB förstärkningsresurser inom olika områden som kan ställas till förfogande.

Kommunerna ska själva, så långt det är möjligt, klara att hantera sina risker. De förväntas samverka inom regionen kring händelser de inte kan klara själva.

För situationer när händelsen är alltför komplex, alltför stor eller långdragen för att inte heller regionens samlade resurser ska räcka till, har MSB förstärkningsresurser inom olika områden som kan användas.

För stöd vid skogsbränder har MSB bland annat skogsbrandsdepåer med släckutrustning samt högkapacitetspumpar för vattentransport.

5.6.1 **Skogsbrandsdepåer på 13 platser i landet**

En skogsbrandsdepå består av tre containrar, främst med släckutrustning. Det följer inte med någon stödpersonal då utrustningen lånas ut.

Depåerna förvaras hos olika räddningstjänster runt om i landet. Totalt finns 24 depåer, varav några utgörs av reservdepåer i MSB:s centrallager i Kristinehamn. Förråd och subventioner över vilka kommuner som har depåer finns på MSB:s hemsida: www.msb.se/skogsbrandsdepa

En depå innehåller bland annat:

- 23 km brandslang av olika dimension
- Strål- och grenrör
- Motorsprutor, bogserbara och bärbara
- Vattenspridare
- Slangupprullare
- Motorsågar
- Sexhjuling med släp
5.6.2 Högkapacitetspumpar för vattentransport

MSB har också två högkapacitetspumpar med en kapacitet på 15 m³/min. Dessa pumpar kan transportera vatten långa sträckor och lämpar sig därför både till insatser vid översvämning och vid skogsbrand. Pumpresursen har också delvis automatiserad slangutläggning och upprullning.

Då högkapacitetspumparna används följer personal med och sköter driften av dem.
6. Nattarbete

Natten är som regel idealisk för bekämpning av en skogsbrand eftersom brandens intensitet går ner under natten. Luftfuktigheten är som regel högst under natten, vinden har avtagit och temperaturen har gått ner, vilket är gynnsamt vid det fysiskt krävande släckningsarbetet. I och med den avtagande brandintensiteten kan bränderna på natten ofta bekämpas med ett direkt angrepp, vilket är mycket gynnsamt ur ett släckningsperspektiv. Natten kan även användas för att exempelvis bättra på befintliga begränsningslinjer, utöva underhåll på motorsprutor etc.

Det finns en rad olika åtgärder för att underlätta arbetet nattetid. Förutom hjälm, pannlampor eller ficklampor bör personalen även ha lättare reflexvästar. Överväg att använda handhuren värmekamera för att underlätta upptäckt av brandhärder. Risker, stigar, flyktvägar etc. kan förses med snitselband med reflex. Om möjligt bör nattpersonalen ha varit i samma område under dagtid för att öka orienteringsförmågan. Exempelvis kan skiftbyte ske innan mörkret faller. Topografiska kartor eller orienteringskartor är ett utmärkt material för att uppmärksamma riskområden för fallolyckor men även för att se var begränsningslinjer kan läggas, fordon ta sig fram etc. Nattorientering är dessutom ett utmärkt ovningsmoment.
7. Säkring av brandens ytterområden

Efter att skogsbranden blivit omsluten av begränsningslinjer och den fortsatta spridningen tillfälligtvis stoppats påbörjas arbetet med att säkra brandens ytterområden närmast begränsningslinjerna. Detta för att säkerställa att begränsningslinjerna står emot plötsliga uppfalamanden och att inte flygbränder uppstår bortanför begränsningslinjerna. Vid mindre skogsbränder eller lågintensiva skogsbränder där förekomsten av glödbränder är låg släcks vanligtvis hela brandområdet av helt och hållet utan några större bekymmer.

Vid större skogsbränder eller högintensiva skogsbränder med stor förekomst av glödbränder blir en total släckning av hela brandområdet ogörligt på grund av resurser och den långa tidsaspekten. I dessa fall inrikts det mesta av arbetet på området närmast begränsningslinjerna. Omfattningen på säkringen av ytterområdena styrs då i allra högsta grad av väder och brandriskprognosen för de närmaste dagarna och veckorna.

Som ett absolut minimum ska alla glödhärdar inom ett avstånd på 20 meter från begränsningslinjerna lokaliseras och släcks. Vid oförändrat eller förvärrat väder och brandriskprognos utökas avståndet till 40 meter\(^1\).

Terrängpartier inom brandområdet som inte brunnit branns antingen av eller omgärdas av en brandgata. Träd med glödbränder eller bränder med öppen flamma i de övre skikten fälls. Alla tyngre bränslen i det avbrända området som kan avlägsnas, till exempel större grenar eller stockar, flyttas minst 50 meter bort från begränsningslinjerna.

I områden i nära anslutning till bebyggelse eller kulturhistorisk miljö kan ovanstående avstånd komma att behöva utökas ytterligare.

Området närmast begränsningslinjerna kan med fördel delas in i sektorer för att öka systematiken i arbetet.

Resten av brandområdet kan kontrolleras mer sporadiskt med exempelvis överflygningar med värme kameras eller med patrullerande genom brandområdet, där handburen värme kamera med fördel kan användas, och fokus läggs enbart på troliga platser för brandhärjard. Dock bör vindutsatta delar inne i själva brandområdet kontrolleras och glödbänder bör lokalizeras och släckas. Även andra resurser såsom glödbrandshund kan användas för att lokalisera glödbränder.

7.1 Praktiska råd

Nedan följer tips och råd vid säkrande av brandens ytterområden:

- Själva arbetet med brandytan ska präglas av noggrannhet. Återantändning får inte ske.
- Börja med området allra närmast begränsningslinjen eller riskobjekt som bedöms kunna ge upphov till brandspridning över begränsningslinjen, till exempel grenar, buskar, terrängpartier etc. som brinner i nära anslutning till begränsningslinjen.
- Helt eller delvis bränt material slängs med fördel längre in i brandområdet. Svart material ska in i det svarta området (dvs. avbränt område).
- Bränsle på motsatta sidan av begränsningslinjen kan också kräva en del åtgärder för att minimera risken för antändning tvärs över begränsningslinjen. Ansamlingar av bränsle avlägsnas från området närmast begränsningslinjen. Grönt material ska in i det gröna området (dvs. icke-avbränt område).
- Använd en fin och spridd stråle och gör ett svep över en mindre brandyta, detta för att upptäcka heta punkter där vattnet förångas. Dels genom att lyssna efter fräsande ljud, dels visuellt genom att observera eventuell vattenånga.
- Observera även rök och svärmar med mygg, vilka dras till värme.
- Se upp för brandskadade träd som plötsligt kan falla. Låt dem dock få stå kvar eftersom de spelar en stor roll för djurlivet i skogen. Men om de utgör en fara eller om det pågår en glödbrand eller flammande brand i dem blir det givetvis nödvändigt att fälla dem.
- Finfördela större brandhärjade bränslestycken med handverktyg för att kyla dem effektivare. Hugg upp och finfördela glödbränder.
- Många gånger kan det räcka med att material rörs runt, sprids, huggs upp eller blottläggs eftersom nattens ökande luftfuktighet då kan stäcka glödbränderna.
- Var observant och kolla noga av myrstackar, eftersom dessa är svårsläckta.
• Se till att vända på stockar och dylikt eftersom glödbränder kan döljas på undersidan.

• Känn efter med fingrarna var glödhärdar fortfarande finns. Se dock upp för varma stenar. Syns vit aska på stenens yta finns det ofta varm glöd och hög värme under. Gräv inte ner glödbränder utan att senare gräva upp dem igen och se till att de är släckta.

• Arbeta i par. En gräver och finfördelar medan den andre kyler och släcker med vatten. Stäng av strålroret med jämna mellanrum för att kontrollera effekt och verkan. En minigrävare kan underlätta arbetet.

• Områden med större djup på markskiktet grävs antingen ut och sprids eller blötläggs kraftigt med till exempel ett släckspett och blandas/rörs om.

• Observera rötter och stubbar! Tänk på spridningsrisken under mark. Gräv upp stubben eller rötterna och känn efter värme om du är osäker.

• IR/värme kamera kan med fördel användas för att hitta brand- och glödhärdar både på marken och från luften. Genomför denna avsökning tidigt på dagen eller sent på kvällen för att undvika felkällor såsom stenar som värmts upp av solen. Tänk på att värme kameran ”ser” endast de yttre ytorna, vilket gör att en brandhård bakom ett trä inte registreras av värme kameran, endast trädets temperatur registreras. Solen kan värma upp stenar och andra föremål som värme kameran registrerar som heta föremål. Räddningstjänsten har därför bäst användning av värme kameran vid soluppgången eller några timmar efter solens nedgång, innan och efter solen har inverkat.

7.2 Bevakning

8. Avslut av räddningstjänst

Nedan följer tips och råd vad gäller praktiska aspekter i samband med avslut av räddningstjänst:

- Inled samarbete med markägarna så tidigt som möjligt i insatsen. De är en bra resurs i släckningsarbetet och de får då tid att sätta sig in i jobbet inför avslutandet av räddningstjänst.

- Om enskilda skogsägare är överens så kan, med fördel, samordning ske till exempel genom en utsedd talesperson, skogsägarföreningar, bolag som känner ansvar gentemot markägarna genom tidigare gjorda affärer eller annat. OBS! Restvärdesledare som samordnare kan endast bli aktuell om skogen är försäkrad, vilket den i många fall inte är.

- Initiera regelbundna markägarmöten tidigt för att stämma av samverkan, redovisa lägesbild och planera för den fortsatta verksamheten.

- Gör en prognos för när avslut av räddningstjänst kan tänkas bli aktuellt och kommunicera detta med markägarna så de hinner förbereda sig.

- Stäm av innan avslut att markägarna är redo och bedöm om de är kapabla att klara uppgiften: tillgång till släckutrustning, personal, helikopter etc.

- Hur länge räddningstjänst ska pågå grundas på de fyra kriterierna för räddningstjänst enligt LSO. Kopplat till kriteriet ”Omständigheterna i övrigt” kan förutsättningarna för avslut av räddningstjänst variera beroende på om det är en enskild resurssvag markägare jämfört med ett stort skogsbolag. Gör en bedömning från fall till fall.

- Om det är stora arealer och många sektorer finns det möjlighet att avsluta insatsen sektor för sektor. Räddningsinsats bedrivs då fortsatt i återstående sektorer. Om det sker en återanstängning i en sektor där räddningstjänst har avslutats så innebär det, juridiskt, att en ny räddningsinsats startas upp.

- Redovisa för markägarna vad som förväntas av dem efter avslut av räddningstjänst. Beskrivningen kan vara detaljerad men på samma gång måste man poängtera tydligt att kontrollintervaller, personaltäthet och liknande kan behöva omprövas vid ändrade väderförhållanden etc.

- Tydliggör för markägaren vilka problem som finns inom respektive sektor: vattenförsörjning, hotspots, eventuella svagheter i begränsningslinjer etc.

- Gör ett skriftligt avslut av räddningstjänst.
9. Bekämpning från luften

9.1 Rekvirering av flygande resurser

Om skogsbranden bedöms kunna få ett snabbt och omfattande förlopp och där flygande resurser kan vara vitala för att minska förloppet bör man tidigt hemställa om resurserna.

MSB:s flygande resurser bör användas i första hand om ingen annan lokal eller regional resurs finns att tillgå som snabbare kan påbörja en insats.

Om inte MSB:s flygande resurser är tillräckliga bör försvarets resurser användas och i sista hand internationella resurser.

9.2 MSB:s förstärkningsresurs med helikopter eller flygplan för skogsbrandläckning

Under skogsbrandsäsongen 2020 kommer det att finnas tillgång till 10 vattenbombande helikoptrar och två skopande flygplan med besättning och utrustning för skogsbrandbekämpning. Vid behov kan fler helikoptrar avropas.

När räddningstjänsten ställs inför skogsbränder med snabb spridning, omfattande brandtillväxt och när deras egna resurser inte bedöms räcka till kan MSB erbjuda olika typer av förstärkningsresurser, till exempel stöd med helikoptrar och skopande flygplan.

MSB:s förstärkningsresurs för flygande luftburet stöd vid skogsbrand syftar till att stödja och stärka de ansvariga aktörernas förmåga att hantera en skogsbrand och därmed begränsa spridningen.

Helikopterresurserna är i normalfallet utspridda på olika baser i landet, positioneringen anpassas efter riskbilden. De är självförsörjande avseende bränsle och medför utrustning och personal för samband med räddningsledare. MSB kan vid behov besluta om höjd beredskap med helikoptrarna utifrån en kombination av brandrisken, eventuella hotade värden och behovet av resurser. Beredskapen kan då höjas genom kortare anspänningstider – dvs ändring av beredskapsnivån - och fler helikoptrar i beredskap.

- Tio helikoptrar, där några har kapacitet att bära upp till 1200 liter vatten.
Utrustning och personal för samband mellan räddningsledare och helikoptrar.

Helikoptrarna kan flyga dygnet runt om väder och ljusförhållanden tillåter.

De skopande flygplanen har en kapacitet att släppa minst 3 000 liter vatten per fällning. I flygresursen ingår besättning och nödvändig tillhörande logistik.

- Två skopande flygplan med kapacitet att bära och släppa minst 3000 liter vatten per fällning.
- Utrustning och personal för samband mellan räddningsledare och planen.

Flygplansresursen är i normalläget placerad vid Skavsta (Nyköping), men beroende på riskbild kan positioneringen ändras. Liksom för helikopterresursen kan beredskapen för flygplanen höjas genom förändrad beredskapsnivå.

Under hela skogsbrandssäsongen kommer sex helikoptrar att stå i förhöjd beredskap, med en maximal anspänningsstid på 90 minuter. De två skopande flygplanen kommer att stå i beredskap, med en maximal anspänningsstid på 180 minuter. Beredskapsnivåerna för de sex helikoptrarna och två skopande planen finansieras delvis med EU-medel eftersom de är en del av unionens civilskyddsarbete, något som möjliggör de högre beredskapsnivåerna under hela säsongen. Om flygplanen och/eller helikoptrarna inte behövs i Sverige kan de användas för insatser i andra EU-länder.

En räddningsledare eller en länsstyrelse har möjlighet att rekvarera förstärkningsresurser från MSB enligt LSO, via myndighetens tjänsteman i beredskap, TIB. Vid behov av förstärkningsresurser kontakts MSB:s tjänsteman i beredskap, TIB via telefon: 054-150 150. Samtalen kopplas via SOS Alarm. E-post: tib@msb.se.

Efter inledande kontakt och när möjlighet ges, fylls begäran i på en särskild blankett (se bilaga 1). Observera att blanketten ska betraktas som dynamisk och kan komma att ändras i utformning under skogsbrandssäsongen.

När flygande resurs begärs med hänsyn till LSO står MSB för kostnaderna.

Observera att det finns både flyg-VHF och marin-VHF där frekvensbandet skiljer sig åt mellan de två fallen. I denna vägledning avses VHF-radio försedd med flygfrekvenser.

9.2.1 Beredskapsnivåer

Grundberedskap - helikopter

Grundberedskap innebär att helikoptern ska vara på anvisad plats inom 12 timmar efter att MSB larmat resursen. Vid förhöjda brandrisknivåer kommer MSB att höja beredskapen.

Helikopter i beredskap

Helikopter i beredskap ska lyfta inom 180 minuter efter att MSB larmat resursen. Insats ska påbörjas inom 3 timmar efter att helikopter har lyft.

Helikopter i förhöjd beredskap

Helikopter med förhöjd beredskap ska lyfta inom 90 minuter efter att MSB larmat resursen. Insats ska påbörjas inom 3 timmar efter att resursen har lyft.

Flygplan

Vid en begäran om beredskap på en annan plats i Sverige, ska efterfrågade flygplan vara på anvisad plats för beredskap inom 12 timmar efter begäran.

Normal anspänningstid är maximalt 180 minuter.

Förkortad anspänningstid är maximalt 30 minuter.
Räddningsledaren gör en hemställan om stöd med Försvarsmaktens helikopterresurser (enligt LSO) till aktuell militärregion.
Räddningsledaren tar först muntlig kontakt och gör därefter hemställan på en särskild blankett (se bilaga 2 och bilaga 3).
Underhandskontakt kan tas med vakthavande befäl på Helikopterflottiljen vid behov av stöd om till exempel vad en hemställan ska omfatta samt för att åtgärder inför ett beslut ska kunna förberedas.
Vakthavande befäl (VB) Försvarsmakten vid Högkvarters fattar beslut om insats med Försvarsmaktens helikoptrar efter beredning med Flygstabent och Helikopterflottiljen.

Figur 15. Försvarsmaktens militärregioner
Helikopterflottiljen kan bidra med följande förmågor vid bekämpning av skogsbrand från luften:

- Medeltunga helikoptrar med 2-2,5 kubikmeter vattentunna.
- Lätta helikoptrar för rekognosering, utrustade med bland annat värmekamera.
- Lednings- och sambandsstöd till räddningsledare för samordning och ledning av insatsen i luften.
- Logistik som behövs för flygverksamheten, som till exempel drivmedelsfordon.

Ledningsförmågan kan även hemställas om separat även om Försvarsmaktens helikoptrar inte deltar insatsen.

En hemställan om stöd bör i detalj beskriva vilka förmågor man vill ha tillgång till för att undvika tolkningar eller missförstånd.

9.4 Kustbevakningsflyget: sensorer och ledningsförmåga

Respektive flygplan är utrustat med en rad olika sensorer som kan användas för bland annat kartering av en skogsbrand:

- EO (elektrooptik) Wescam MX-15, vilket innehåller värmebildkamera, samt videokamera i nosen. Från och med hösten 2020 påbörjas en väsentlig uppgradering av systemet med högupplöst grafik, laseravståndsmätning, förmåga att se flammor genom brandröken m.m.
- IR/UV scanner där IR-scannern kan användas för kartering av markyta.
- Handhållen stillbildskamera Canon EOS för högupplösta bilder med positionering.

Följande kommunikationsmöjligheter återfinns:

- 2 st VHF flygfrekvenser
- 2 st VHF maritima kanaler
- 2 st HF + 1 VHUF
- 2 st satellittelefon
- 4G datalink
- SAR pejl, förmåga att peja olika frekvenser
- 2 st RAKEL (NatBlå med möjlighet att länka ihop med ex RAPS)
- Reapeter- samt Gatewayfunktion (RAKEL)
- AIS / TCAS (för att se andra flygande enheter)
- Outlook mail (möjlighet att maila samt MMS:a enskilda telefoner)
- Möjlighet att exportera SiTaC symboler och polygoner i kml/kmz-format (kompatibelt med Google Earth, Daedalos, Oculus mfl).

Kustbevakningsflyget kan bistå med:
9.4.1 Luftrumskoordination, ACO (Air Coordinator)

Kustbevakningsflygets förmåga att utföra ACO har visat sig mycket tillämpligt under de större skogsbränderna vid Sala 2014 samt Ljusdal 2018.

Vid luftrumskoordineringsanvänds enligt normalprocedur frekvens 123,1 MHz. I annat fall kommer man överens om annan frekvens.

Ledning enligt ACO-koncept kräver flygbakgrund samt ett stort mått av träning. På grund av exempelvis hindrande terräng utförs ACO med fördel från luften.

Behovet av ACO bör man tänka på tidigt om man inser att insatsen kommer att bli omfattande och där man förväntar sig ett större antal helikoptrar eller en mix bestående av både helikoptrar och flygplan. Enskild räddningsledare kan ha en dialog med de flygande enheterna på plats och även med Kustbevakningsflyget för att bedöma behovet av ACO.

Kontaktvägar Kustbevakningsflyget:
Ledningscentral i Göteborg, som nås 24/7
Vakthavande befäl
Tel: 0776-70 60 00
Lc@kustbevakningen.se
9.5 Internationella resurser

Om de nationella resurserna är otillräckliga kan man efterfråga stöd från andra länder. Naturligast är då att vi i första hand vänder oss till våra nordiska grannländer för stöd. Via Nordred-avtalet kan en räddningsledare själv kontakta aktörer i våra nordiska grannländer och be om stöd i en räddningstjänstsituation.

Det finns också ett system inom EU:s civilskyddssamarbete, Civilskyddsmekanismen, vilket är förberett så att länder smidigt ska kunna stödja varandra med resurser. MSB är här nationell kontaktpunkt gentemot EU. Om en räddningstjänst vill ha stöd med resurser via EU kontaktar man därför MSBs TiB. MSB bedömer rimligheten i förfrågan och gör den eventuella förfrågan om resurser. MSB ska också informera regeringen när en sådan förfrågan görs hos EU.

Den aktör som efterfrågar stödet har det formella ansvaret för att ta emot det på ett bra sätt. MSB har dock en särskild förstärkningsresurs, Värdlandsstöd, som kan bistå med att ta emot och koordinera internationellt stöd. Även denna resurs efterfrågar man via MSBs TiB.

9.6 Helikopteranvändning

Helikoptern är det i särklass mest flexibla verktyget vid bekämpning av skogsbrand och kan användas till följande uppgifter:

- vattenbombning
- vattentransport (fyllning av bassäng eller tank ute i terrängen på svårtillgängliga platser)
- transport av personal och utrustning
- undsättning av personal
- rekognosering av skogsbrand
- antändning och skyddsavbrännning av områden i syfte att skapa brandgator med hjälp av till exempel helitorch.
De flygande resurserna kompletterar markresurserna vid svårtillgänglig terräng, vid brandavsnitt med hög effektutveckling där ett direkt angrepp från markpersonal inte är möjligt och vid flygbränder.

OBS! De flygande resurserna ska ses som ett komplement till markresurserna; en skogsbrand kan släckas av enbart markpersonal men aldrig enbart av flygande resurser.

Vid större skogsbränder ändras uppgiften för de flygande resurserna till att istället

- utföra understödjande vattenbombningar för att fördröja brandens spridning i vissa områden i syfte att skapa tid för markpersonalen att iordningställa begränsningslinjer
- utföra vattenbombningar för att få ner brandintensiteten och på så vis, genom riskminimering, möjliggöra för markstyrkor att gå in i området och påbörja ett direkt angrepp
- skydda bebyggelse och göra punktinsatser i områden där riskerna är stora för räddningstjänsten
- utgöra en första insatsresurs i efter att ett åskoväder dragit över brandområdet.

Vattenbombningarna utförs i samverkan med räddningstjänstpersonalen, där räddningstjänstpersonalen går på eldbandet så fort fällningen utförts för att utnyttja den dämpande effekten som fällningen har på brandintensiteten. Sektorer ska inte tömmas på räddningstjänstpersonal bara för att vattenbombningar ska genomföras, men säkerhetsavståndet till eldbandet i samband med vattenbombningen ska givetvis följas.

Vid större skogsbränder är en flygande resurs med större släckkapacitet ofta av större vikt än flygande resurser med mindre släckkapacitet. Detta för att öka
chansen att vattnet verkligen når ner till önskad plats, för att en större yta ska täckas eller för att få en större mängd släckvatten per ytenhet vid varje vattenbombning. Dock kan även lättare helikoptrar spela en viktig roll vid brandbekämpningen av en större skogsbrand, dels för att få en kontinuitet i vattenpåföringen, dels i form av en första insatsresurs mot uppkomna flygbönder.

9.7 Att leda en enstaka helikopter

Redan vid första kontakt med helikopterbesättningen kan med fördel lägesbild med SiTaC-symboler (se avsnitt 11.3) fotograferas av och skickas till besättningen. Besättningen får redan från början en bild av var räddningsledaren vill ha helikoptern insatt och var markenheter, ledningsplats, kritiska punkter etc. finns.

När helikoptern har kommit fram till brandplatsen bör räddningsledaren eller något annat brandbefäl följa med upp i luften för en första rekognosering. Arbetet med lägesbilden fortsätter på enkel karta (garn med SiTaC-symboler) till exempel med hjälp av en vanlig kamera eller en värmebildkamera.

Om behov föreligger kan aktuellt luftrum lysas av efter beslut av räddningsledare. Ansökan om restriktioner för luftfarten skickas till Transportstyrelsen.

Efter att taktiken och inriktningen på vattenbombningen beslutats - med fördel i samråd med den flygande besättningen - påbörjas själva vattenbombningen. Beakta eventuella restriktioner vad gäller vattendrag att hämta vatten från samt att samma tunna inte bör hämta vatten från flera sjöar på grund av risken för spridning av kräftpest. Beslut om att ta släckvatten från en privat damm skall tas av räddningsledaren samt dokumenteras eftersom det innebär ingrepp i annans rätt. Vattenbombningen utförs under ledning av räddningstjänstpersonalen i nära samverkan med den flygande besättningen och även här spelar kommunikationen en stor roll. Räddningstjänstens personal bör återkoppla till flygande enheter om verkan av genomförda fällningar eftersom helikopterbesättningen sällan ser vattenbombningens fulla verkan. Helikopterbesättningen bör kommunicera
eventuella uppflammanden, uppkomna flygbränder eller förestående fällningar till räddningstjänstpersonalen på marken.

I vissa fall kan det bli tal om att räddningstjänstpersonal leder in en helikopter till en specifik punkt i terrängen. Detta kan göras på olika sätt där ett framtaget kartunderlag med grid-system med fördel kan användas som underlag. En metod är att leda in helikoptern med hjälp av karaktäristiska landformationer eller växtlighet, till exempel ”Nordost om stora stenen, avstånd 150 meter”. Den karaktäristiska landformationen kan även benämnas ”bullseye”. Ett annat sätt är klockmetoden. Rakt fram har helikopterbesättningen klockan 12, rakt bakåt klockan sex, till vänster klockan nio osv. Man leder då in helikoptern genom att till exempel säga ”Klockan nio, avstånd 200 meter”. En tredje metod är att räddningstjänstpersonal märker ut de platser där man vill att vattenbombningarna ska ske till exempel med snitslar i klara färger.

9.8 Taktik vid vattenbombning

Taktik vid vattenbombning med helikopter har en del likheter med taktiken som räddningstjänsten på marken använder, bland annat med att använda direkt respektive indirekt angrepp. Men taktiken skillar sig även på grund av de olika arbetsuppgifterna.

De flygande resurserna används i huvudsak för punktinsatser i syfte att skapa tid för räddningstjänsten, få ner brandintensiteten och möjliggöra markinsatsen. Detta kan jämföras med insatsen på marken som syftar till att omsluta branden, stoppa vidare brandspridning, säkerställa att områdena närmast begränsningslinjerna är släckta etc.

Om möjligt bör man kraftsamt de flygande resurserna under det inledande skedet av branden. Detta för att undvika att binda upp flygande resurser till en eventuell brand under en längre tid. Bättre då att kraftsamt tidigt, få ett tidigt avgörande och lösgöra flygande resurserna för att vara beredda på nytt larm. Under det inledande skedet bör man undvika att använda både helikopter och flygplan för vattenbombning då en mix av flygande resurser kräver en organisation som kan ta tid att få på plats.

9.8.1 Direkt och indirekt angrepp

Direkt angrepp innebär att vattenbombningen utförs direkt på eldbandet eller i omedelbar närhet av eldbandet och då i nära samarbete med räddningstjänstpersonalen på marken. Exempelvis kan halva lasten släppas på själva branden och
andra halvan framför branden, detta för att få till en hastighets- och intensitetsminskning på branden. Direkt angrepp används vid frontalangrepp, flankangrepp, flygbränder och plötsliga uppfammanden (se mer om detta nedan).

Indirekt angrepp innebär att fällningarna utförs på det bränsle som ligger längre bort från eldbandet i skogsbrandens väg, dvs. man väter ner bränslet, eventuellt i anslutning till brandgator.

I Sverige lär det i de flesta fallen bli tal om enbart direkt angrepp i och med vattnets avdunstning och minskande effekt med tiden. I texten nedan fokuseras därför i huvudsak på det direkta angreppet.

9.8.2 Frontalangrepp
Fällningar vid brandfronten kan få ner brandintensiteten och spridningshastigheten för att möjliggöra för räddningstjänstpersonalen att utföra ett direkt angrepp i området.

Vid alltför höga brandintensiteter (flamhöjder > 3,5 meter) eller vid en alltför lång brandfront är ett frontalangrepp högst tveksamt. I det senare fallet kan dock brandfronten delas upp i mindre och mera lätt hanterliga avsnitt genom ett antal koncentrerade fällningar. De koncentrerade fällningarna bör göras i områden eller avsnitt där topografin eller vegetationen är gynnsam och ökar chansen till lyckad uppdelning av brandfronten. I många fall innefattar frontalangreppet även den mest kritiska eller intensiva flygeln för att förhindra att brandfronten växer i omfattning. Vid en redan omfattande brandfront kan därför insatsen inriktas i huvudsak på den mest aktiva flygeln för att pressa branden tillbaka och krympa brandfronten på så vis.

9.8.3 Flankangrepp
9.8.4 Flygbränder, hotspots och plötsliga uppfammanden

Helikopterns uppgift blir att hålla nere branden tills räddningstjänstpersonal anländer till platsen. De första fällningarna görs på själva flygbranden och på bränslet alldeles framför fronten. De följande fällningarna görs på brandens bakre delar och på bränslet runt själva branden.

9.9 Övriga inverkande faktorer

9.9.1 Fällningens genomträngning av grenverk

Fällningen från en helikopter styrs av riktningen, höjden samt hastigheten vid själva fällningen. Helikopterarnas förmåga att starkt kunna variera hastigheten vid vattenbombningen innebär att fällningar från helikoptrar är betydligt mer flexibla jämfört med fällningar från vattenbombande flygplan. Exempelvis är en stillastående fällning ett alternativ vid helikopteranvändning men inte vid användande av flygplan.

Vid fällning från en helikopter kommer vattenkoncentrationen att vara som högst i mitten av fällningsytan och avta med ökat avstånd från centrum. Vid vattenbombning med helikoptrar med hög lyftkapacitet kommer ytan med hög vattenkonsentration att vara större och därför ha större chans att tränga ner genom grenverk. Förmågan att kunna tränga ner genom grenverk är framför allt önskvärd vid tät skog där branden befinner sig på marknivån.
9.9.2 Tillgång till vatten
De centrala frågorna vid bedömning av släckvattenpåföringen är hur pass kontinuerlig påföringen av släckmedel är samt mängden släckmedel som kan tillföras. Styrande faktorer är omloppstiden (dvs. hur lång tid det är mellan helikopterns fällningar), antalet vattenbombande helikoptrar, helikoptrarnas lyftkapacitet samt möjlighet till tankning av flygbränsle i nära anslutning (för att undvika avbrott i vattenbombningen).

Vid en skogsbrand där vattenpåföringen är alltför sporadisk eller låg kan åtgärder bestå i att öka antalet helikoptrar eller att använda tyngre helikoptrar, att använda vattendrag närmare branden eller att inriktta de flygande resurserna längs mindre intensiva avsnitt såsom flygel eller flank.

Vid mycket torra förhållanden och extrema brandriskvärden bör minst två flygande enheter användas för att säkerställa slagkraftighet och kontinuitet i släckmedelspåföringen.

Vad gäller eventuell avlysning av vattendrag, se avsnitt 14.2.1.

9.9.3 Räddningstjänstpersonalens arbete
Om räddningstjänstpersonalen avancerar snabbt kan inriktningen vara att exempelvis tränga ihop brandfronten. Om personalen istället avancerar långsamt kan inriktningen vara att erbjuda hålla nere de mest kritiska avsnitten av branden.

Det är viktigt att räddningstjänstpersonalen inte backar undan alltför långt från eldbandet vid fällningarna från luften. Om avståndet blir alltför långt kan personalen inte utnyttja minskningen i brandintensitet efter fällningen, och branden kan då återigen öka i intensitet och omöjliggöra direkt angrepp från räddningstjänstens sida.

9.9.4 Rökpelaren
Rökpelarens riktning och utbredning kommer att styra valet av taktik en hel del på grund av siktkrav och att genomflygning genom rökpelare bör undvikas. Rökpelaren kan därför begränsa möjligheterna avsevärt och exempelvis omöjliggöra ett frontalangrepp och innebära att insatsen istället inriktas mot flanker och flyglar.
Exempel 1:
En skogsbrand brinner i relativt öppen vegetation (inget heltäckande trädverk) med en vindhastighet på 5 meter/sekund och en relativt smal brandfront.

Helikopterns förstahandsuppgift kan då vara fällningar vid/på brandfronten för att kyla ner och få ner spridningshastigheten. Beroende på var markpersonalen kommer in i området kan exempelvis nästkommande fällningar inriktas på den mest aktiva och kritiska flygeln.

Vid en skogsbrand med längre brandfront, eller brandfront med mycket hög effektutveckling, hade kanske inriktningen varit att först och främst inrika sig på den mest kritiska flygeln och därefter jobba för att minska brandfrontens längd.
Vattenbombande flygplan

Taktiken vid användning av vattenbombande flygplan är till stora delar identisk med taktiken vid användning av en helikopter.

Ett antal skillnader finns dock i och med skilda tekniska förutsättningar. Fällningsområdet kommer att ha ett mera utsträckt utseende i och med den högre hastigheten jämfört med en helikopter. Precisionen vid fällningen kommer generellt att inte vara lika hög som för en helikopter, vilket gör att räddningstjänstpersonalen på marken får vara beredd på att dra sig längre bort vid en fällning jämfört med från helikopter.

Ledning av flera helikoptrar och flygplan

Vid ökat antal vattenbombande helikoptrar samt om vattenbombande flygplan anländer ökar komplexiteten och behovet av styrmning av de flygande resurserna, både med tanke på säkerheten och på effektiviteten av den flygande släckinsatsen, kommunikationen etc. I samband med detta arbete kan Försvarsmakten och
Kustbevakningsflyget vara behjälpliga med ledningsresurser och sakkunnig personal.

9.12 Säkerhetsaspekter när en helikopter används

Det är viktigt att tänka på sin egen såväl som andras säkerhet i samband med helikopteranvändning.

Riskzonen kring en helikopter är 5 meter utanför yttre änden av huvudrotorn och 5 meter runt stjärtrotorn. Riskzonen kommer därför att variera beroende på helikoptertyp. Vid start och landning är dock riskzonen 30 meter runt helikoptern. Om riskzonen måste beträdas ska detta ske under ögonkontakt med och efter tecken från besättningen.

Figur 17. Riskzonen är 5 meter utanför yttre änden på rotoerna.

Tänk på följande när du närmare dig eller befinner dig inom riskområdet:

- Närma dig och avlägsna dig från helikoptern så att du har ögonkontakt med piloten, och invänta tecken innan du närmar dig.
- Närma dig helikoptern framifrån eller från sidan, aldrig bakifrån. Vanligast är att man närmar sig helikoptern snett framifrån. Om du närmar dig bakifrån ser piloten inte dig och rotorbladen bak till är dessutom svåra att upptäcka när de är i rörelse.
- Använd skyddsglasögon och hörselskydd.
- Undvik rotorbladen! Närma dig helikoptern hukandes på plan väg eller i uppförbacke.
- Avlägsna dig från helikoptern på plan väg eller i nerförbacke.
• Se till att utrustningen du bär med dig inte sticker upp ovanför huvudhöjd. Detta är särskilt viktigt i närheten av tyngre helikoptrar, där rotorbladen på grund av tyngden kan sänka sig långt ner vid låga varv.

• Spänn alltid fast allting som du misstänker kan blåsa bort innan du närmar dig helikoptern. Tänk även på utrustning och materiel som finns i landningsområdet och som riskerar att blåsa bort. Avlägsna eller säkra utrustningen/materielen.

I samband med vattenbombning finns det risk för att personal slås till marken, träffas av stenar som följt med i vattenlasten eller grenar som dras ner av vattenlasten. Denna risk föreligger dock endast direkt under vattenlasten. Det finns därför ingen anledning att utrymma brandområdet under släckning med helikopter, utan säkerställa istället att vattenbombningen sker i samverkan med räddningstjänstpersonalen på marken och håll ett öga på helikoptrar i närområdet. Var också beredd att tillfälligt gå åt sidan vid en fallning.

En av skillnaderna mellan helikopter och flygplan vid vattenbombning är att helikoptrar vanligtvis släpper vatten med större precision jämfört med flygplan. Detta gör att helikoptrar är särskilt användbara vid vattenbombningar i nära samarbete med markpersonal, bland annat med tanke på säkerheten.

Tänk också på säkerheten för de vattenbombande resurserna. Varna flygande besättningar för risker i form av kraftledningar, UAV (Unmanned Aerial Vehicle) eller drönare i luften etc.
10. Skogsbrand nära bebyggelse

Det första ett brandbefäl gör vid ankomsten till en skogsbrand som hotar bebyggelse är att orientera sig och göra en första bedömning av vilken inriktning insatsen ska få, med hänsyn till rådande omständigheter och tillgängliga resurser. Man ser på samma faktorer som vid en vanlig skogsbrand, men undersöker också vilka särskilda risker som kan finnas vid bebyggelsen samt beaktar att brandens rökpelare kan tryckas mot bebyggelsen och utgöra en risk för de boende. Finns det kanske förråd eller en verkstad med gasflaskor eller bränslebehållare? Var finns elledningarna?

Vägsystemet är också viktigt att ta hänsyn till. Finns det reträtgvägar om branden skulle bli övermäktig? Går det att mötas längs vägarna eller är vissa vägar i princip enkelriktade? Det kan vara tveksamt att skicka fordon för att skydda enstaka hus om det bara finns en väg in. Fordon får inte hamna i återvändsgränder.

Insatsplanering i områden med bebyggelse är att rekommendera, då tidsramarna vid en insats vid bebyggelse och tillhörande utrymning kan vara begränsade.

Räddningsledaren måste tänka på att bebyggelsen till exempel kan vara en bondgård. Insatsen kan då bli långvarig tidsmässigt samt att ytterligare resurser kan komma att krävas för att hjälpa till med eventuell utrymning av djur.

Överväg att i förväg och tidigt positionera släckresurser bland bebyggelsen. När väl branden närmar sig bebyggelsen kan det bli tal om snabba förflytningar.
Ofta finns det en stor resursbrist i inledningsskedet av en insats, när man ännu inte hunnit få fram tillräckliga resurser. Flygburna resurser, helikoptrar, är utmärkta i detta läge, eftersom de snabbt kan vara på plats och göra släckinsatser som fördröjer branden och skapar tid för markstyrkorna att göra slangdragningen. Ett råd till räddningsledaren vid en skogsbrand som hotar bebyggelse är att under hela insatsen ha en helikopter kretsande över branden. Då får man snabbt reda på var flygränder och kritiska avsnitt finns.

När brandbefället gjort sin orientering och bedömning på platsen måste befället välja en defensiv eller offensiv taktik vid skydd av bebyggelse och bekämpning av branden (se mer om detta nedan).

10.1 Offensiv taktik

Den offensiva taktiken används när resurserna och tiden räcker till. Räddningstjänsten bekämpar skogsbranden aktivt innan den når fram till bebyggelsen. Räddningstjänstpersonalen anordnar begränsningslinjer och tanken är att branden aldrig ska kunna komma i närheten av bebyggelsen.

Förutom de resurser som går åt till den aktiva brandbekämpningen bör brandbefället avdela släckbilar och placera dem strategiskt bland bebyggelsen. Uppgiften är då främst att bekämpa flygbränder som kan hota bebyggelsen, och vara redo att skydda bebyggelsen med hjälp av defensiv taktik, om man inte lyckas hindra brandens framfart.

Räddningstjänsten kan givetvis också kombinera de båda taktikerna. Resurser avdelas då för att på avstånd anlägga brandgator och begränsningslinjer, samtidigt som släckbilar avdelas för att med hjälp av defensiv taktik skydda den bebyggelse som finns närmast branden.

10.2 Defensiv taktik

Den defensiva taktiken används när resurserna brister och tiden är knapp. Det kan innebära att brandbefället fördelar släckbilar och tankbilar till de hotade husen. Slangdragning görs från bilarna och en skogsbrandgata görs runt husen. Räddningstjänstpersonalen inväntar skogsbranden för att skydda bebyggelsen när skogsbranden närmar sig. I SiTaC-systemet (se avsnitt 11.3) benämns detta slangsysteem "skyddslinje".

Se till att vara mobil. Vid slangutläggning, vattenfyll inte slangsystemet med automatik utan låt systemet ligga torrt ifall resurser snabbt måste omdisponeras.
Det räcker i regel med tre strålrör per hus. Två av strålrören skyddar huset mot strålningssvärmen och bekämpar den annalkande branden, det tredje strålröret används för att våta vegetationen runt huset och för att bekämpa den annalkande branden. Brandmännen, som ska skydda själva huset mot den annalkande skogsbranden, bör vänta med att våta ner till exempel fasaden tills det är mindre än en halvtimme kvar innan skogsbranden när fram. Spara hellre vattnet till att aktivt bekämpa själva branden. Strålrören kan även behöva användas för att skydda släckfordon.

Använd släckresurser för att bekämpa eventuella flygbränder samt bränder i lättare bränsle. Detta för att reducera risken för antändning av de högre bränsleskiktens som i sin tur kan antända bebyggelsen.

Vid bränder i bränsle av kompakt natur bör räddningsledaren avdela fordon som en taktisk reserv, som snabbt kan sättas in på kritiska avsnitt. Detta motiveras av att vattenförbrukningen ökar vid sådana bränder.

Mobilt sprinklersystem kan med fördel användas vid skyddande av bebyggelse.

10.3 Åtgärder för att reducera risken för antändning

Enheter som ska skydda bebyggelsen, men även fastighetsägare, kan öka chanserna att rädda bebyggelsen genom en rad åtgärder. En av de första åtgärderna för sådana enheter är att reducera mängden brännbart material runt byggnaderna, till exempel vedupplag, trädgårdsmöbler, buskar och träd, genom att avlägsna det, våta ner det eller täcka över det med presenningar. Tänk även på eventuella ansamlingar av brännbart material i hängrännor samt på respektive under trädäck.

Stående träd kan vara viktigt att fälla för att på så vis få ner flamhöjden vid en skogsbrand, alternativt få bort de lägre grenarna för att reducera risken för bränder i de högre bränsleskiktens.

Samtliga dörrar, fönster och ventilationen ska dessutom vara stängda. Brännbart material inne i husen som är placerat alldeles vid fönstren bör flyttas bort från fönstren. Täck dessutom om möjligt för fönstren, men se till så att det går lätt att
tillfälligt ta bort övertäckningen för att kontrollera och upptäcka eventuell antändning av inredning inne i huset.

För bort gasflaskor, till exempel gasolgrillar, och behållare med brandfarlig vätska.
11. Lägesbild, dokumentation och kartmaterial

11.1 Lägesuppföljning

Att lägesuppföljning behövs är nog självklart för de flesta. Tyvärr är det dock vanligt med improviserade/tillfälliga lösningar och att man inte är förberedd när det visar sig att stabarsbetet helt plötsligt ska pågå i tillfälliga lokaler, som till exempel en konferensanläggning, en skola m.m.

Behovet av lägesuppföljning är dock inte större vid skogsbränder än vid andra större händelser. Men eftersom skogsbränder tenderar att uppkomma långt från fasta ledningsplatser och dessutom vara långvariga så tvingas man ibland tillgripa tillfälliga lösningar när infrastrukturen inte är på plats. Dessa tillfälliga lösningar är svåra att bryta eftersom det kräver energi och stjäl tid, som man inte anser sig ha i det intensiva skedet. När läget lugnat ner sig tycker man oftast inte heller att det är lönt att byta system.

Det är dock viktigt vid bekämpningen av skogsbränder att samma underlag och lägesbild används och att till exempel inte olika typer av kartmaterial används. Valet av kartmaterial ska därför vara genomtänkt och helst planerat innan.

Bestäm tidigt i insatsen vilket koordinatsystem som ska användas vid lägesangivelser och informera samtliga samverkansparter, helikopterbesättningar etc. om vilket koordinatsystem som används.

kommunikation för inblandade aktörer. Denna karta kan självklart kombineras med att plotta SIrC-symboler. Förutom vid den rena bekämpningsfasen kan ett grid-system även med fördel användas under de senare faserna vid lokalisering av glödbränder och säkring av brandens ytterkanter.

Efter skogsbranden i Västmanland lade räddningstjänsten ned ett enormt arbete på att sammanställa och efterkonstruera händelseförlopp och beslut m.m. eftersom informationen var spridd i pappersanteckningar, Google-dokument m.m.

Man bör bland annat därför använda ett lägesuppföljningssystem som är uppsatt och förberett i förväg.

11.2 GIS

GIS (geografisk informationssystem) och geodata kan vara ett kraftfullt verktyg att använda vid en skogsbrand. För att kunna utnyttja styrkan med GIS och geografiska analyser vid en händelse är det av stor vikt att händelsens position är känd. Minimum bör vara en koordinat i händelsens centrum men de bästa möjligheterna ges om brandens hela utbredningsområde är känt.

Med hjälp av en position för branden ges möjlighet att utföra en mängd olika GIS-analys och prognoser, till exempel för att se vilka kritiska objekt som finns i brandens närhet och för att kunna skapa brandspridningskartor där man med hjälp av väderprognoser och vegetationskartor kan göra en prognos för hur snabbt branden kan sprida sig i olika riktningar.

11.2.1 Copernicus

Copernicus tillhandahåller informationstjänster inom olika områden varav Copernicus Emergency Management Service (EMS Mapping) besörjer området för händelser som naturkatastrofer, av människan orsakade händelser samt humanitära kriser.

Sverige har gjort ett antal aktiveringar av Copernicus genom åren. Dessa har rört storm, skogsbrand och översvämning.
Figur 18. Detta är en av de kartor som producerades under skogsbränderna sommaren 2018 och som visar brandutbredningen vid en viss tidpunkt.

Myndigheter, räddningstjänster och kommuner kan vid en händelse aktivera Copernicus EMS-tjänst genom att kontakta MSBs TIB. MSB, som är nationell kontaktpunkt för tjänsten, förmedlar därefter aktiveringen till ERCC (Emergency Relief Coordination Centre) i Bryssel.

11.2.2 EFFIS

Inom Copernicus EMS (Emergency Management Service) har det tagits fram en tjänst för förebyggande arbete gällande skogsbrand. Tjänsten heter EFFIS (European Forest Fire Information System) och dess syfte är att prognosticera brandrisk i Europa samt att i ett tidigt skede kartera skogsbränder. På hemsidan återfinns en så kallad hotspot funktion där två olika metoder tillämpas (MODIS respektive VIIRS).

På hemsidan (se länken nedan) finns en applikation med en dagligen uppdaterad brandriskkarta över hela Europa med en tidshorisont på upp till 9 dagar. FWI-värden samt tillhörande underindex kan också fås åskådliggjort på en karta via applikationen.

Errover detta erbjuder tjänsten statistik över brandhistorik (utbredning i rum och tid). EFFIS erbjuder också stöd till dem som arbetar med skydd mot skogsbränder i EU:s medlemsländer samt förser Europeiska kommissionen och Europaparlamentet med uppdaterad och pålitlig information om skogsbränder i Europa.

11.3 SiTaC

SiTaC är ett system med kartsymboler för att åskådliggöra lägesbilder och problemställningar men även taktiska åtgärder. När det gäller de taktiska åtgärderna särskiljer systemet mellan planerade åtgärder och pågående åtgärder. Detsamma gäller för resurser, dvs. systemet skiljer mellan planerade resurser och resurser på plats.

Systemet innehåller även symboler för att beskriva skogsbrandens utbredning, spridning samt faktorer som inverkar på skogsbrandens beteende. Systemet har dessutom fördelen att anländande resurser snabbt kan få en bild av läget, uppmärksammade skadeplatsfaktorer, mål med insatsen samt planerade och pågående taktiska åtgärder.

Se bilaga 4 för en djupare beskrivning av systemet samt kartsymbolernas utseende.

11.4 MSB RIB Lupp

Lupp ska förse beslutsfattare med korrekt, relevant och tillförlitlig information, jämte prognoser av möjliga framtida scenarion och dessas konsekvenser, vilket leder till bättre beslut och effektivare räddningstjänstarbete.

I Dagboken kan anteckningar, lägesrapporter eller beslut skrivas in. I Verksamhetsöversikten hålls ordning på pågående insatser och vilka enheter som är ute på uppdrag eller är tillgängliga. I Lägestablan fås en förenklad översikt över läget för alla pågående insatser. Statustablan visar status för enheter per station och ger därmed en överblick på resurstillgången.

Figur 19. MSB RIB Karta med SiTaC-symbolor.
12. Personskaderisker

12.1 Elrisker vid kraftledningsgata

Vid brandbekämpning i och nära kraftledningsgator ska alltid ledningsägaren kontakta personalen för att dels känna till att arbete pågår, dels ges möjlighet att vidta säkerhetsåtgärder. Inom släckområdet kan det dock finnas flera olika ledningsägare. Därför är det lämpligt att i förebyggande syfte upprätta kontakter mellan räddningstjänsten, ledningsägare i området och larmcentralen för att klarlägga ägandeförhållanden, kontaktvägar (telefonnummer) och rutiner.

Vid skogsbrand intill en kraftledning är det viktigt att ledningen identifieras, så att rätt ledning frånkopplas om frånkoppling ska göras. Större ledningar kan oftast identifieras med hjälp av skyltar på ledningsstolparna där ledningslittera (information om ledningen) och stolpnumret anges. Dessa data ska alltid anges vid kontakt med ledningsägaren. Vid lägre spänningar saknas ofta denna märkning och då får lokalisering ske via GIS-data etc.

Räddningsledaren ska alltid ta kontakt med ledningsägaren för att avgöra om ledningen ska frånkopplas (arbete utan spänning) eller inte med tanke på räddningstjänstpersonalens säkerhet under släckningsarbetet. Ledningsägaren måste få underlag och en situationsbeskrivning av räddningsledaren för att ta ställning till en eventuell omedelbar frånkoppling eller avställning av så kallad återinkopplingsautomatik för ledningen.

12.1.1 Säkerhetsavstånd

Det är viktigt att räddningstjänstpersonalen alltid följer gällande regler för säkerhetsavstånd vid arbete i närheten av elektriska anläggningar. Avståndet ska
bestämmas från den närmaste oskyddade spänningsförande delen eller ledaren. En tumregel för säkerhetsavstånd för vattenbegjutning vid brandsläckning i närheten av spänningsförande elledningar är att man ska hålla ett minsta avstånd på 10 meter till ledningen då vatten används, oavsett vattenkvalitet och typ av stråle.

Särskild uppmärksamhet bör iakttas vid transport av redskap och fordon på ojämn mark intill en kraftledning, eftersom lasten kan pendla ut, eller då skrymmande redskap flyttas eller lyfts.

OBS! Följ alltid gällande regler för säkerhetsavstånd!

Regler för säkerhetsavstånd vid icke-elektriskt arbete (t.ex. brandbekämpning)

Tabell 3. Säkerhetsavstånd i sidled.

<table>
<thead>
<tr>
<th>Spänning</th>
<th>Säkerhetsavstånd i sidled</th>
</tr>
</thead>
<tbody>
<tr>
<td>vid lågspänning (<1 kV)</td>
<td>minst 2 meter</td>
</tr>
<tr>
<td>vid högspänning högst 40 kV</td>
<td>minst 4 meter</td>
</tr>
<tr>
<td>vid högspänning över 40 kV</td>
<td>minst 6 meter</td>
</tr>
</tbody>
</table>

Tabell 4. Säkerhetsavstånd i höjdled.

<table>
<thead>
<tr>
<th>Spänning</th>
<th>Säkerhetsavstånd i höjdled</th>
</tr>
</thead>
<tbody>
<tr>
<td>vid lågspänning (<1 kV)</td>
<td>minst 2 meter</td>
</tr>
<tr>
<td>vid högspänning</td>
<td>minst 4 meter</td>
</tr>
<tr>
<td>vid högspänning 400 kV</td>
<td>minst 4,5 meter</td>
</tr>
</tbody>
</table>

OBS! Ovanstående säkerhetsavstånd gäller inte i de fall där brandplymen berör ledningen. I sådana fall utökas säkerhetsavståndet ytterligare och säkerhetsavståndet omfattar även stolpen och brandplymen.

Om det angivna säkerhetsavståndet inte kan upprätthållas ska ledningsägaren kontakta och ledningen göras spänningslös eller fränkoplas.

Om släckningsarbetet måste genomföras inom säkerhetsavståndet för ”Icke-elektriskt arbete” är släckningsarbetet att betrakta som ”Elektriskt arbete”. Sådant arbete ska alltid utföras under ledning av en av ledningsägaren/arbetet kompetent person (den elarbetsansvarige). Ledningsägaren ser till att den elarbetsansvarige infinner sig på plats och gör en bedömning av vilka elektriska risker som föreligger och hur arbetet ska göras på ett säkert sätt.
Om den elarbetsansvarige gör bedömningen att ledningen måste frånkopplas får släckningsarbetet inte påbörjas inom säkerhetsavståndet, förrän besked har lämnats av den elarbetsansvarige till räddningsledaren att alla åtgärder vidtagits för att förebygga elektrisk risk.

12.1.2 Om ledningen inte kan frånkopplas

Om ledningen inte kan frånkopplas ska arbetet utföras med den elarbetsansvarige på plats och med hänsyn till de elektriska risker som föreligger. Den elarbetsansvarige ska vidta de säkerhetsåtgärder som krävs för att släckningsarbetet ska kunna göras på ett säkert sätt.

Det är mycket viktigt att hålla angivna avstånd till en spänningsförande del, eller det säkerhetsavstånd den elarbetsansvarige anger. Räddningstjänstpersonalen får aldrig komma inom riskområdet med någon kroppsdel, något verktyg eller något annat föremål under släckningsarbetet.

12.1.3 Varning för automatisk återinkoppling!

Vissa kraftledningar har så kallad automatisk återinkoppling, vilket innebär att ledningen återinkopplas automatiskt efter en viss bestämd tid. Som säkerhetsåtgärd bör alltid återinkopplingsautomaten tas ur drift vid släckning av en skogsbrand intill en ledning. Spänningsättning av en ledning kan dessutom även ske vid felsökning och sektionering.

Det är viktigt att räddningstjänstpersonalen kontaktar ledningsägaren (sök driftcentralen eller kopplingsansvarig) för att ge denne underlag för att eliminera risken för spänningsättning genom återinkoppling.

12.1.4 Nedfallen ledning

Tänk på att en kraftledning kan sjunka flera meter på grund av värme påverkan. En nedfallen ledning ska alltid betraktas som spänningsförande tills det bekräftats att ledningen är frånkopplad och jordad. **OBS!** En nedfallen ledning kan spänningssätta marken över 10 meter. En person som befinner sig inom det området kan förölyckas på grund av stegspänning från marken.
Man bör även ta hänsyn till risken med en nedfallen ledning som kommit i beröring med ett stängsel. Trädfallning intill ledningsgator bör därför inte utföras om det finns risk att träd kan komma i farlig närhet av en spänningsförande ledning (stegspänning).

Beakta även risken för fallande ledningsstolpe då stolpkonstruktionen kan ha försvagats.

12.1.5 Risk för explosion
Tänk även på risken för explosion i elektriska apparater. Den är störst vid släckningsinsatser vid högspänningsapparater som innehåller olja, till exempel en stolptransformator.

12.2 Fallande träd
Risken att räddningstjänstpersonal ska få ett träd över sig är stor vid släckning av skogsbrand. Träd som har utsatts för brand kan vara försvagade i rotsystemet och faller då lättare vid starka vindar eller vattenbombning från luften. Även vid rena överflygningar med helikopter finns det risk för fallande träd. Likaså finns det risk för fallande träd vid säkringen av ytterområden. Var även medveten om risken för fallande träd vid inkörsel och utkörsel från områden med höga och brandpåverkade träd.

12.3 Glödgropar
Glödgropar är gropar eller håligheter som innehåller större mängder finfördelat glödande material. De har höga temperaturer och utgör en risk för bränskskador i fall man trampar ner i dessa. Glödgroparna har vanligen ingen bärighet utan foten kan sjunka långt ner och omslutas av glödande material. Det kan vara svårt att se glödgroparna då de ofta har ett lager av vit aska på ytan och det är inte säkert att man ser glöden som kan vara dold längre ner i marken. Naturliga håligheter i marken, myrstackar, torv och gamla kolbottnar (plats där det tidigare funnits en kolmila) är exempel på platser där det kan utvecklas glödgropar.
12.4 Hög brandbelastning

Områden med hög brandbelastning, till exempel hyggesområden med stora virkesavlägg, GROT-avlägg (grenar och toppar som samlats ihop efter avverkning) eller andra ansamlingar av brännbar biomassa eller hyggen, bör betraktas som riskobjekt och försiktighet bör iakttas där. Om möjligt, förhindra brandspridning till dessa områden eller objekt.

12.5 Vattenbombning

Vid vattenbombning finns det risk för att grenar eller underminerade och brandskadade träd kan falla över räddningstjänstpersonalen på grund av nedfallande vatten. Håll därför reda på var helikoptrar eller flygplan är och håll avståndet till den punkt de verkar mot. Var beredd att kliva åt sidan (helikopter) eller avlägsna dig från närområdet (flygplan). Brandbefäl måste alltid hålla reda på var personalen befinner sig i förhållande till var de flygande resurserna vattenbombar. Hjälm ska bäras och varselväst kan med fördel användas när vattenbombning pågår i området.

12.6 Att bli omringad av branden

Under en skogsbrand kan samtliga räddningstjänstpersonal befina sig inne i växtligheten, som samtidigt utgör bränslet. Risk finns då att
räddningstjänstpersonalen vid exempelvis en vindkantring kan omringas av skogsbranden. Alternativen är då att snarast bege sig till:

- Den väg där släckbilen står.
- Ett näraliggande vattendrag eller sjö.
- Ett redan avbrändt och svart område.

Sådana alternativ kallas reträttplatser, och det är viktigt att all personal i förväg vet vilka reträttplatser som finns tillgängliga och var de finns.

I flera länder används ofta förkortningen LACES (Lookouts, Anchor point, Communications, Escape routes och Safety zones) som minnesstöd för att undvika riskfyllda och oönskade situationer för räddningstjänstpersonalen:

- Med Lookout avses en spejare som placeras på en strategisk plats för att hålla koll på branden och varna vid till exempel uppfammanden. Om möjligt kan även spejare i luften hjälpa till, till exempel från en helikopter.
- Anchor point anger ankarpunkten, dvs. att minimera risken för att branden kringgår räddningstjänstpersonalen.
- Med Communications avses att fungerande kommunikation finns med angränsande enheter, spejare, flygande resurser etc. som kan varna vid uppkomna faror.
- Med Escape routes och Safety zones avses att reträttplatser och vägar till dessa platser ska vara rekognoscerade, utsedda och kända av personalen i förväg.

12.7 Värmepåverkan och vätskebrist

Symtom på värmeslag

- Kroppstemperatur på över 40 grader
- Illamående och kräkningar
- Yrsel, irritation och förvirring
- Snabb puls
- Rödflammig, torr hud

För att minska risken för värmeslag bör man dricka mer vättska. Var uppmärksam på om du kissar mindre än vanligt eftersom det är ett tecken på att du behöver få i dig mer vättska. Det är även viktigt att få i sig tillräckligt med energi och salter.

12.8 Lämplig klädsel

För att minska risken för värme påverkan ska räddningstjänstpersonalen vid släckning av skogsbrand, till skillnad från till exempel lägenhetsbrand, undvika tjock och tät klädsel. Betydligt bättre klädsel är en tunt skogsbrandoverall med en t-shirt i bomull under. Ännu bättre är ett tvådelat ställ, som ger bättre ventilation.

Ett ombyte är inte att föra. Man står där och blir svettig hela dagen, och sedan på kvällen när det blir kallt är det en fördel att ha någonting torrt att dra på sig.

På fötterna bör man ha läderkängor med företrädesvis höga skaft och värmebeständiga sulor. Gummistövlar är inte lämpliga, eftersom en skogsbrand ofta innebär mycket vandring under heta dagar. Fötterna mår bättre i läderkängor än i gummistövlar.

Säkerställ att exempelvis solskydd, myggmedel samt skavsårplåster finns att tillgå i exempelvis släckfordon.

12.9 Utse säkerhetsbefäl/-koordinator

Överväg att utse säkerhetsbefäl eller säkerhetskoordinator vid en större insats. Personen i fråga ska då ha till uppgift att kontrollera de risker som förekommer och kan komma att förekomma samt se till att skyddsarbetet samordnas. Riskfyllda moment kan exempelvis vara skyddsavbränningar eller klippterräng.

12.10 Påverkan av brandrök

Under släckningen av skogsbranden andas man in brandrök, som bland annat innehåller kolmonoxid, tjärpartiklar m.m. Kolmonoxid är en luktfri och giftig gas. Vid inandning av högre halter av kolmonoxid kan man känna huvudvärk, yrsel och trötthet. Undvik därför i största möjliga mån att utsätta dig för brandrök.
Brandbefäl bör tänka på att personer som utsätts för konstant brandrök kan bli förvirrade och gå vilse. Rotera därför personalen med jämna mellanrum i partier med omfattande rökpåverkan.

12.11 Uthållighet

Släckning av skogsbrand präglas av hårt arbete under längre perioder. En rad olika åtgärder kan vidtas för att öka uthålligheten och effektiviteten bland släckpersonalen:

- Förutom lätt personlig utrustning bör personalen även bära med sig dricksvatten, gärna lättillgängligt i bältet.
- Avlösning av personal bör ske vid strälaröret för att säkerställa kontinuitet. Vid avlösning i avlägsna sektorer, överväg att flyga ut personalen med helikopter för att spara värdefull arbetstid.
- Förstärkningar bör komma med till exempel buss, tåg eller flyg (såvida inte släckfordon också efterfrågas). Undvik att räddningstjänstpersonal ska agera chaufför i onödan och komma fram trötta.
- Planera tidigt för utspisning av räddningstjänstpersonalen. Inledningsvis kan ett enklare matpaket duga men tillagad mat bör komma ut i ett tidigt skede. Överväg att köra ut eller flyga ut mat med helikopter till avlägsna sektorer.
13. Miljöhänsyn

När man använder släckvatten kan det också uppstå skador. Djurlivet i en sjö kan starkt påverkas om vattennivån sänks. Därför bör man ha kontroll på hur stort vattenuttaget blir och hur det påverkar vattennivån. Om man märker att vattennivån förändras påtagligt bör man byta vattendrag. Beakta även risken för spridning av kräftpest om samma vattendunna används i olika vattendrag utan att ha rengjorts emellan.

Undvik att använda skumvätskeinblandning i släckvattnet eftersom detta innebär en miljörisk. Skumvätskeinblandning kan ha en negativ miljöpåverkan på vattendrag redan vid låga inblandningar på några enstaka promille, samt även på växtlighet vid någon enstaka procentinblandning. Detta beror på skumvätskans toxicitet som kan slå ut fisk, vattenorganismer och olika växter. Toxiciteten beror i sin tur på vilket ytaktivt ämne som finns i produkten. Olika skumvätskors grad av toxicitet kan dessutom variera mycket.

Även användande av så kallade långtidsverkande retardenter kan ha en negativ miljöpåverkan. Dessa ämnens miljöpåverkan är dock under utredning.

Under arbetet med att säkra ytterområdena bör man tänka sig för innan man fäller träd. Träden spelar en stor roll för djurlivet, framför allt för fågellivet i skogen. Man bör därför inte fälla andra träd än de som utgör en uppenbar risk för räddningstjänstpersonalen och de människor som i framtiden kommer att vistas i skogen.
14. Taktik vid släckning av skogsbrand

Detta kapitel har en sammanfattande roll och avser att visa på en röd tråd för de olika komponenterna i vägledningen men även att ge brandbefäl en fingervisning om var och när de olika komponenterna är aktuella under det inledande skedet av en brand.

Kapitlet omfattar till största del de tre första stegen enligt den så kallade sjustegsmodellen: att läsa olyckan och göra en riskbedömning, att skapa en bild av möjliga åtgärder samt att besluta om mål med insatsen och en taktisk plan. De tre stegen har i kapitlet beskrivits ur ett skogsbrandsperspektiv. I viss mån nämns även delar som ingår i de övriga fyra stegen.

14.1 Steg 1. Läsa olyckan och göra en riskbedömning

Att läsa olyckan handlar till största delen om att identifiera vad hjälpbehovet består av. För att kunna göra det behöver man hantera frågorna om vad som har hänt, vad som händer och vad som kan hända.

Mattsson, M & Eriksson, L, 2010. Taktikboken - En handbok i hur man på ett scenariobaserat sätt genomför effektiva insatser vid brand i byggnad. Informationsbolaget.

Framme på plats börjar nu arbetet med att läsa olyckan, nu med förhoppningsvis bättre möjlighet att verifiera fakta. Att läsa olyckan vid skogsbränder är ofta väldigt utmanande och svårt eftersom det på grund av terrängen och vegetationen är svårt att se hela skadeområdet. Vid större skogsbränder är det därför av extra stor betydelse att tidigt skapa sig en överblick eller, ännu bättre, ett fågelperspektiv. Sträva efter att så tidigt som möjligt komma upp i luften, om helikoptrar finns tillgänglig, för att få en så bra lägesbild som möjligt. Andra alternativ kan vara bilder från skogsbrandflyg eller om UAV med kamera eller IR-sensor för bildöverföring finns tillgängligt som en tidig resurs. Oavsett om man får tillfälle att läsa olyckan från luften eller inte är syftet att samla information kring de olika skadeplatsfaktorer man behöver ha med i sin värdering inför kommande beslut.

Vid all orientering och rekognosering är det nödvändigt att ha tillgång till ett bra kartmaterial för att kunna överföra det man ser till hållpunkter i terrängen. Har man erfarenhet av att använda STaC-modellen kan man med fördel använda den redan i ett tidigt skede.

- Rita in området och försök identifiera vad som är viktigast initialt.
Identifika kritiska faktorer.

Prioritera liv, egendom (infrastruktur, byggnader m.m.) och miljö. Ta gärna hjälp av någon som är lokalt orienterad.

Sök samverkan med markägare och skogsbolag och använd dem som resurser för överblick och för den fortsatta insatsen.

Lät rekognoseringen ta tid. Den inledande rekognoseringen är viktig; några minuter extra kan spara timmar i det fortsatta arbetet, och det är lätt att bli stressad särskilt om man är ovan vid helikopterflygning. Det är bra om den som ska upp i helikoptern har fligit tidigare, så ta chansen till miljötrafik Namn på den som ska med. Dessutom, det finns möjlighet att söka och använda dem som resurser för överblick och för den fortsatta insatsen. Avgör kartan för plottning under överflygningen och uppmärksamma speciellt skyddssobjek, möjliga begränsningslinjer, tillfartsvägar, vattendrag, eventuellt sektorindelning m.m.

Redan vid den inledande rekognoseringen ska en riskbedömning göras där exempelvis brandens beteende bedöms och risker i närområdet såsom kraftledningar etc. uppmärksammas. För vidare information kring risker vid släckning av skogsbrand, se kapitel 12 i vägledningen om risker.

14.1.1 Skadeplatsfaktorer

Vid skogsbränder finns det många skadeplatsfaktorer som kan komma att påverka ens sätt att agera. I följande avsnitt lyfts de faktorer fram som normalt sett är de mest kritiska. Det är dessa man behöver vara extra uppmärksam på.

Väder

Denna skadeplatsfaktor är den viktigaste att ta hänsyn till när det handlar om skogsbrand. Extrema väderleksförhållanden kan orsaka allvarliga konsekvenser för insatsen med ett brandförlopp som är svårt att påverka, samtidigt som det kan utsätta oss för stora risken om vi är på fel plats. Om man arbetar proaktivt med denna faktor på räddningstjänsten har man troligtvis bra kontroll över väderleken på både kort och lång sikt under skogsbrandssäsongen, redan innan skogsbranden har inträffat. Detta skapar förutsättningar för att vara förberedd på hur brandens beteende kan förväntas bli. För att få de parametrar inom väder som påverkar insatsen, använd gärna MSB:s informationssystem “Brandrisk skog och mark” som forser med data från SMHI.

Vinden är den väderfaktor som påverkar brandens riktning och hastighet mest. Om man vill veta i vilken riktning branden kommer sprida sig använder man sig

När man tittar på temperatur och luftfuktighet i förhållande till varandra kan man i vissa sällsynta fall uppnå det man kallar för ”crossover”. Detta är när temperaturen korsar värdet för luftfuktigheten. Vanligtvis rör det sig om fall där lufttemperaturen går över 30 °C och den relativa fuktigheten går under 30 %. Då är det extra vanligt att skogsbränder uppstår och att det kan resultera i brandförlopp som är svårare att hantera. För vidare information kring hur väder påverkar skogsbrandens beteende, se boken Skogsbrandsläckning.

Vegetation och terräng

Vegetation och då framför allt markvegetation är brandens bränsle. Typ av vegetation där eldbanden befinner sig eller hotar att spridas till är en faktor av stor betydelse, vilken ger olika förutsättningar för vilka åtgärder som är möjliga och vilket brandförlopp som kan förväntas. Exempelvis kan en flerskiktad vegetation skapa ett förlopp som inte en äldre tallskog kan ge upphov till. Om man kan identifiera vilka vegetationstyper som finns i området kan man även taktiskt använda sig av detta när man till exempel ska välja en plats för åtgärder, som direkt angrepp eller indirekt angrepp eller välja typ av begränsningslinje. Val av vilka terränggående fordon man kan använda sig av påverkas också av vegetationstypen. För de olika vegetationstypernas brandbeteende, se boken Skogsbrandsläckning.

Topografi
Topografin, lutningen på marken, kan komma att påverka ens beslut. Man behöver ta med detta i sin beräkning av hur snabbt branden kommer sprida sig, men även att brandbeteendet kan komma att ändras. En negativ topografisk förändring, alltså när lutningen går från ökande topografisk höjd till minskande höjd, kan med fördel användas taktiskt. Topografi och väderstreck som är gynnsamma ur släckningssynvinkel är nedförsbacke och norrslutning medan uppförsbacke och söderslutning är motsatsen. För topografins inverkan på brandbeteendet, se även boken Skogsbrandsläckning.

Vid naturliga förändringar i topografin eller vegetationstypen beskriver man det som en känslig punkt. Denna punkt kan så klart vara både bra och dålig taktiskt. Vill man märka ut den punkten på en karta så finns det en särskild symbol i SiTaC-systemet.

Branden

Som tidigare angivits går det att få en första indikation om brandens intensitet genom att studera brandplymen eller rökpelaren. När man som befäl läser skadeplatsfaktorer om branden är det bra om det går att identifiera var startpunkten har varit och markera ut den på kartan med till exempel en SiTaC-symbol. Denna punkt kan man sedan använda som referens i sina fortsatta bedömningar, bland annat vid bedömningen av spridningshastigheten. Det är också bra om man kan utläsa var de olika delarna av branden är på kartan. Man bör identifiera var rygg, flanker, flyglar och front är.

I de flesta fall är det låg löpbrand som utgör huvudtypen av brand. Om man observerar hög löpbrand eller kanske till och med toppbrand behöver man ta hänsyn till detta med avseende på spridningshastighet och vilka åtgärder som kan vara möjliga. För vidare information kring brandförlopp, se kapitel 2 i denna vägledning.

Begränsningslinjer

Begränsningslinjer kan delas upp i två kategorier: naturliga befintliga begränsningslinjer och skapade begränsningslinjer. Naturliga befintliga begränsningslinjer kan till exempel vara sjöar, vattendrag, myrområden, kraftledningsgator, vägar, stigar, vissa typer av lövskog etc. Dessa kan vid behov förstärkas. Naturliga förutsättningar för att skapa begränsningslinjer bör utnyttjas eftersom det kan spara både tid och resurser.

Den insatsledande staben kan utgöra ett värdefullt stöd med att bland annat identifiera möjliga begränsningslinjer, och staben har också möjlighet att i större utsträckning analysera och ta hänsyn till de faktorer som påverkar möjligheterna att etablera en begränsningslinje såsom resurstillgång, väder, spridningshastighet och tidsaspekter.

För vidare information kring begränsningslinjer, bekämpning på marken samt från luften, se kapitel 5 i denna vägledning.

Människor

Det är vid brand i en byggnad självklart att ställa sig frågan om det är någon människa som hotas eller kan komma att hotas av händelsen. Så länge man inte vet detta brukar åtgärder inrätta på att kunna säkerställa att så inte är fallet.

Naturen är en vanlig plats för människor att vara på och det är därför viktigt att man väger in detta när man läser olyckan. År människor hotade måste man hantera detta i första hand. Gör eventuella utrymningar i samverkan med polisen eller be dem förbereda för utrymning av hotade områden. Spärra av tillfartsvägar in i området. För en planerad eller genomförd utrymning finns det särskilda symboler i SiTaC-systemet.

I samband med utrymningar spelar kommunikation med media och allmänhet en central roll. Centralt i detta läge är att få ut korrekt information. Överväg att begära förstärkningar för att hantera det ökade kravet på kommunikation.

Omgivning

Omgivningen är en faktor som geografiskt och på sikt kan vara väldigt stor. Som befäl behöver man tidigt göra en bedömning över vad som är hotat i närområdet. I
det tidiga skedet skulle det kunna vara ett fritidshus, en ladugård eller annan byggnad. Det kan även vara forminnen, biotoper eller annat skyddsvärt inom det området. En kraftledning i området skulle kunna vara en samhällsviktig funktion som hotas, likväl som en motorväg, ett sjukhus eller andra kritiska beroenden.

När man hanterat det kritiska närområdet är det viktigt att även tänka i ett längre tidsperspektiv.

Risker

Redan från det tidigaste skedet gäller det att identifiera faktiska och möjliga risker. Identifierade risker kan till exempel vara ett brandförlopp som innebär eller kan innebära risker för personalen, terräng som innebär risk för fallolyckor etc. De risker man identifierar påverkar vilka av sina identifierade möjliga åtgärder (steg 2) som man slutligen väljer att använda sig av i den taktiska planen (steg 3).

14.1.2 Händelseutveckling

En nyckelfaktor vid släckning av skogsbrand är att hela tiden jobba i olika tidsskalor, dvs. att försöka ha både ett kort och ett längre tidsperspektiv på händelseutvecklingen, eftersom skogsbränder oftast är långt utdragna i tiden. För händelseutvecklingen gäller det till exempel att väga in faktorer som inverkar på skogsbrandens beteende och förlopp, såsom väder, topografi, bränsle, de släckande resursernas avancemang i terrängen och de flygande resursernas planerade ankomst. Här kan till exempel tumregler för bedömning av brandens troliga spridning och utbredning tjäna som stöd (se vidare i kapitel 3 om bedömning av en skogsbrands spridning).

14.1.3 Riskbedömning

Detta steg innefattar att identifiera risken, bedöma hur stor sannolikheten är samt vad konsekvensen kan bli om det inträffar. Vidare innefattas även överväganden som rör hanteringen av risken, till exempel avspärrning, zonindelning samt att sätta skyddsnivå och restriktioner för dem som kan komma att utsättas för risken.

Särskilda risker vid skogsbrand kan exempelvis vara kraftledningar, brandröker och värmepåverkan. Riskreducerande åtgärder kan till exempel vara att säkerställa att varje sektor har minst två möjliga vägar ut ur området eller att all personal känner till vilka reträttplatser som gäller. För vidare information om risker och riskreducerande åtgärder, se kapitel 12 om risker.
Ta vid riskbedömningen hänsyn till både nuvarande risker, påverkande risker och risker som inte föreligger just nu men som kan uppstå vid förändrade förutsättningar. Det senare fallet kan till exempel vara en vindkantring eller en intensitetshöjning vid en övergång till hög löpbrand.

14.2 Steg 2. Identifiera möjliga åtgärder

14.2.1 Resurstillgång

Markägare

Etablera kontakt med markägare så tidigt som möjligt i insatsen. Markägaren har god kännedom om bestånd och terrängförhållanden och kan ange egendom och områden med särskilda värden som kan vara av betydelse för insatsens planering. Om det är många mindre privata markägare i brandområdet kan samordning bli nödvändig. Samordningen kan då ske genom att markägarna själva utser en representant att företräda dem, en restvårdesledare, en skogsägarförening, ett skogsbolag eller liknande.

Om ett större skogsbolag är markägare finns ofta kontakter och resurser att tillgå som kan få stor betydelse för insatsens genomförande. Det kan vara kartmaterial, skördare, skotare, entreprenadmaskiner, personal, egen släckutrustning och liknande. En bra resurs vid planering av begränsningslinjer är de planerare som är knutna till skogsbolagen. De kan vara till stor hjälp när det till exempel gäller bedömning av tidsåtgång för en viss åtgärd eller uppmärkning av planerade avverkningar för att skapa eller förstärka befintliga begränsningslinjer.

Ett bra sätt att komma igång med markägarsamverkan är att tidigt initiera markägarmöten där man stämmer av arbetet och planerar framåt. Möten bör hållas regelbundet, gärna vid en fast tidpunkt varje dag. Att tidigt involvera markägare i insatsen underlättar även för arbetet efter avslutad räddningstjänst. De är då redan insatta i arbetet och har fått tid att planera för det fortsatta arbetet efter räddningstjänstens avslut.

För vidare information kring säkrande av ytterområdena, avslut av räddningstjänst etc., se kapitel 8 i vägledningen.

Skogsbrandspecialister

Personal med specialkunskaper inom bekämpning av skogsbrand utgör en bra resurs och kan vara till stor hjälp i beslutsfattandet. Bränningsledare har ofta erfarenhet från såväl kontrollerade naturvårdsbränder som skogsbränder och kan bistå med förslag på åtgärder och metoder som kan leda fram till en hållbar taktisk plan. Vid anläggning av skyddsavbrägning bör man särskilt ta hänsyn till
deras erfarenheter. Bränningsledare finns till exempel hos länsstyrrelser, skogsbolag och privata entreprenörer.

MSB:s förstärkningsresurser

Vid större och resurskrävande skogsbränder finns MSB:s förstärkningsresurser som ett alternativ. Förstärkningsresurserna omfattar bland annat skogsbrandsdepåer och högkapacitetspumpar.

Flygande resurser

Brandbekämpning från luften kan i vissa skeden av en skogsbrand vara den enda släckatgård som är möjlig för tillfället beroende på resurstillgång, rökutveckling, risker för markpersonal, otilgänglig terräng och i kritiska situationer. I de flesta fall utgör dock de flygande resurserna ett komplement till de insatser som görs på marken.

Helikoptrar kräver som regel små förberedelser när det gäller landningsplatser m.m. Vid släckning med helikopter kan markpersonal dessutom oftast finnas kvar i respektive sektor. Det är då en fördel om markpersonalen är utrustade med kläder i varselfärg.

Vattenbombande flygplan kräver större förberedelser eftersom till exempel avlysning av en sjö eller ett vattendrag varifrån vatten ska tas lär komma ifråga. För respektive flygplanstyp finns det dessutom olika minimikrav för djup, längd och bredd på berörd sjö eller vattendrag. Räddningsledaren får enligt 6 kap. 2 § LSO vid en räddningsinsats bereda sig och medverkande personal tillträde till annans fastighet, avspärra eller utrymma områden. Avlysning av vattendrag kan dock ej ske innan en pågående släckningsinsats med stöd av LSO. Avlysning av vattendrag ska dokumenteras enligt 6 kap. 6 § LSO, dvs beslut i skriftlig form där det framgår när och av vem beslutet har fattats, skäl för beslutet samt vad beslutet avser. Avlysning av allmän farled ska i möjligaste mån undvikas, men om avlysning av vattendrag som utgör allmän farled äger rum måste detta i god tid kommuniceras ut mot sjöfarten. Denna kommunikation kan ske främst via två vägar:

- Ufs (Underrättelser för sjöfarande) redaktionen: ufs@sjofartsverket.se
- Vid brådskande ärende kontakta Sweden Traffic: swedentraffic@sjofartsverket.se ; tel: 0771-63 06 85

Vid avlysning av allmän farled ska detta även skyndsamt informeras Sjöfartsverket via dess TiB funktion som sedan kan vidarebefordra informationen internt. Sjöfartsverkets TiB nås enklast via SOS Alarm.
Om behov föreligger kan aktuellt luftrum lysas av efter beslut av räddningsledare. Ansökan om restriktioner för luftfarten skickas till Tranportstyrelsen. Kom ihåg att flygförbud även gäller drönare. För vidare information kring taktik vid vattenbombning, samverkan med markresurser etc., se kapitel 9 om flygande resurser i vägledningen.

Depåplats
Utse en depåplats där resurser och materiel kan samlas. Det bör vara en central plats som är lättillgänglig och har gott om utrymme. Utse gärna en logistikansvarig.

14.2.2 Möjliga åtgärder

Att skapa och förstärka begränsningslinjer

En stor insats fordrar ett varierat angreppssätt. Vid val av åtgärd bör man ta hänsyn till platsens förutsättningar. Vid sektorindelning av en insats bör man ta hänsyn till vilken eller vilka metoder som ska användas för att skapa begränsningslinjer. Olika metoder kan kombineras. För ett lyckat resultat och optimerat utnyttjande av resurser krävs ofta ett varierat angreppssätt utifrån rådande förutsättningar på platsen såsom terräng, väder, tillgänglighet, vägnät, vattentillgång m.m.

En begränsningslinje kan byggas upp i flera steg:

1. Utse lämplig naturlig begränsningslinje.
2. Bredda genom röjning eller avverkning.
3. Transportera bort virket (brännbart material) från begränsningslinjen. Här separeras brandskadat material som läggs i det avbrända området och obränt material som läggs i det obrända området.
4. Förstärk begränsningslinjen genom vattenbegjutning, skyddsavbrännning eller schaktning beroende på resurstillgång och hur branden utvecklas.

Den sista punkten i ovanstående lista benämns i vissa fall med ”blackline”. ”Blackline” innebär att man säkrar upp det avbrända området med vattenbegjutning och namnet syftar på att det grå (avbrända) blir svart vid vattenbegjutning. Blackline kan med fördel göras runt hela brandområdet innan man lämnar över för bevakning. Metoden görs i flera steg där första steget är att säkrar 20 meter in i det avbrända området. Blackline kan appliceras i svårtillgängliga områden eftersom det kan utföras med enbart markpersonal.
14.3 Steg 3. Besluta om MMI och taktisk plan

Precis som vid andra typer av räddningsinsatser utgör MMI, mål med insatsen, ett av de viktigaste besluten du som befäl tar. Det kan upplevas att målet är självklart, men det visar sig ofta vid insatsutvärdering att avsaknad av ett uttalat mål kan orsaka tveksamheter och att olika uppfattningar finns om varför man gör olika åtgärder. MMI handlar alltså om vad man vill uppnå eller vad man inte vill skända.

För att kunna nå detta mål effektivt behöver man koppla på en taktisk plan. Den taktiska planen beskriver hur man vill uppnå målet.

Var noga med att kommunicera ut både MMI och taktisk plan ut till sektorerna i skogen.

14.3.1 MMI (Mål med insats)

Man kan med fördel prova att vända på begreppet till att istället beskriva vad man inte vill skända eftersom det ofta gör det lättare att ta fram ett MMI. Några exempel kan vara att skogsbranden INTE ska sprida sig till den östra sidan av vägen, att samhället i frontens spridningsriktning inte ska påverkas, att personalen inte ska skadas osv.

14.3.2 Taktisk plan

För att konkretisera ett beslutat MMI tas en taktisk plan fram. Denna beskriver HUR vi ska uppnå MMI och uttrycks gärna med minnesregeln IDA (Inledningsvis… Därefter… Avslutningsvis).

En taktisk plan kan vara olika utformad beroende på vilken omfattning den har och vem den är avsedd för. En taktisk plan kan göras för hela insatsen, och därmed spegla MMI för hela insatsen. MEN en taktisk plan kan också utformas specifikt för en enskild sektor och blir då lite mer detaljerad just för deras uppgifter så att den blir lättare att verkställa för en sektorchef.
När den taktiska planen tas fram bör du slå fast en inre och om möjligt även en yttre begränsningslinje.

Exempel på taktisk plan för hela insatsen:

I: Skapa oss en lägesbild, inventera vilka behov vi har på kort och lång sikt…

D: Släcka branden…

A: Stötta och hjälpa de drabbade med att komma igång med efterbevakning…

Exempel på taktisk plan för sektor:

"Målet med insatsen är att branden inte ska sprida sig till motsatta sidan vägen. Detta ska man uppnå genom att inledningsvis fördöja brandspridningen längs brandfronten och flyglarna med hjälp av vattenbombande resurser, i syfte att skapa tid för markresurser att avancera i terrängen. Därefter ska direkta angrepp påbörjas mot respektive flank och flygeln medan flygande resurser kraftsamar sina fällningar mot flyglarna för att på så sätt trycka ihop brandfronten. Avslutningsvis ska direkta angrepp genomföras mot brandfronten; de flygande resurserna dämpar eventuella uppfammanden längs brandfronten.”

14.3.3 Metodval

I den taktiska planen återfinns som regel en rad olika metodval för att nå målet med insatsen. Metodval kan exempelvis vara konstruktion av brandgata längs en viss sträcka, vattenbombning längs ett kritiskt avsnitt eller utförande av skyddsavbränning.

14.3.4 Säkerhet

Eventuella säkerhetsaspekter kan till exempel vara att uppmärksamma personalen på att branden har gjort en del rusningar och att uppfammanden är frekventa samt att informera dem om vilka reträtter platser som gäller.
Överväg att vid en större skogsbrand tidigt utse ett säkerhetsbefäl som ansvarar för säkerheten. Ha för vana att informera personal som går in i brandområdet om risker och arbetsmiljö i samband med incheckning.
Bilaga 1: Blankett, begäran om stöd från MSB:s förstärkningsresurs helikopter eller flygplan
Checklista för begäran om stöd med luftburet stöd för skogsbrandbekämpning

Begäran om luftburet stöd för skogsbrandbekämpning

Begäran kan ske genom länsstyrelsen eller direkt till MSB från Räddningsledare. Den som begär stöd kontaktar MSB TiB på telefon 054-150 150, samt mailar nedanstående ifyllt underlag till tib@msb.se

Ansvarig Räddningsledare för begäran:__

<table>
<thead>
<tr>
<th>Checklista aktivering</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontaktuppgifter räddningsledning alt operativt ansvarig för insatsen i insatsområdet:</td>
<td>Namn:___</td>
</tr>
<tr>
<td></td>
<td>Telefon:___</td>
</tr>
<tr>
<td></td>
<td>Epost:___</td>
</tr>
<tr>
<td></td>
<td>RAKEL:___</td>
</tr>
<tr>
<td>Kontaktuppgifter Länsstyrelse:</td>
<td>Namn:___</td>
</tr>
<tr>
<td></td>
<td>Telefon:___</td>
</tr>
<tr>
<td></td>
<td>Epost:___</td>
</tr>
<tr>
<td></td>
<td>RAKEL:___</td>
</tr>
<tr>
<td>Plats - ort:</td>
<td>Närmaste ort/er:</td>
</tr>
<tr>
<td></td>
<td>Plats för insats:</td>
</tr>
<tr>
<td>Plats – koordinater,</td>
<td>Bifoga gärna karta med koordinater,</td>
</tr>
<tr>
<td>Se instruktion sidan 3, använd endast ett av referenssystemen, t.ex. WGS84 eller SWEREF99</td>
<td></td>
</tr>
<tr>
<td>Omfattning, yta:</td>
<td></td>
</tr>
<tr>
<td>Vilken typ av brand rör det sig om:</td>
<td>Ange nedan</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Låg löpbrand:</td>
<td></td>
</tr>
<tr>
<td>Hög löpbrand</td>
<td></td>
</tr>
<tr>
<td>Antänds enstaka trädtoppar:</td>
<td></td>
</tr>
<tr>
<td>Toppbrand:</td>
<td></td>
</tr>
<tr>
<td>Vad är hotat/vad ligger i skogsbrandens väg:</td>
<td></td>
</tr>
<tr>
<td>Bredd brandfront:</td>
<td></td>
</tr>
<tr>
<td>Spredningshastighet, m/min:</td>
<td></td>
</tr>
<tr>
<td>Identifiera risker i området för flygande enheter:</td>
<td>Ange så detaljerat som möjligt nedan</td>
</tr>
<tr>
<td>Kraftledningar:</td>
<td></td>
</tr>
<tr>
<td>Radiomaster:</td>
<td></td>
</tr>
<tr>
<td>Drönare:</td>
<td></td>
</tr>
<tr>
<td>Andra flygande enheter som deltar i insatsen:</td>
<td>Helikoptrar, skogsbrandflyg, andra flygplan,</td>
</tr>
<tr>
<td>Andra flygande enheter som EJ deltar i insatsen:</td>
<td>Privata helikoptrar, flygplan, drönare</td>
</tr>
<tr>
<td>Övriga insatta resurser på marken:</td>
<td></td>
</tr>
<tr>
<td>Vilken radiofrekvens som används mellan flygande resurser:</td>
<td>Frekvens flygradio: ______________________</td>
</tr>
<tr>
<td>Finns det behov av luftumssamordning – ACO (Aircraft Coordinator):</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Ange vart vatten kan hämtas, gäller i första hand flygplan.** | **Fyll i plats/er och koordinater nedan.**
Avlyst område, 2000 x 100 meter och 2-3 meter djupt, |
| **Namn på vattendrag, sjöar, hav,** | |
| | |
| **Plats/er – Koordinater,**
Se instruktion sidan 3, använd endast ett av referenssystemen, t.ex. WGS84 eller SWEREF99 | **Bifoga gärna karta med koordinater,** |
| | |
| **Ange vart vatten INTE kan hämtas, gäller flygplan och helikopter:** | **Fyll i plats och koordinater nedan,** |
| **Namn på vattendrag, sjöar, hav,** | |
| | |
| **Plats – Koordinater,**
Se instruktion sidan 3, använd endast ett av referenssystemen, t.ex. WGS84 eller SWEREF99 | **Bifoga gärna karta med koordinater,** |
| | |

Exempel koordinater från www.eniro.se när du öppnat hemsidan, klicka på karta, zooma in till aktuell plats, klicka sedan på markör ”visa GPS-koordinater” längst ner till höger och ställ den på aktuell position.

WGS84
56°17'16.1"N 14°41'37.3"E
WGS84 DDM
56°17.268'N 14°41.622'E
WGS84 decimal (lat, lon)
56.287803, 14.693098
RT90 (nord, öst)
6240532, 1431165
SWEREF99 TM (nord, öst)
6238154, 481039
Bilaga 2: Blankett, begäran om stöd från Försvarsmakten
BEGÄRAN OM STÖD FRÅN FÖRSVARSMAKTEN

ENLIGT STÖDFÖRORDNINGEN (2002:375) eller FFS 2002:7 §3
(Gäller ej räddningstjänst)

ENLIGT LAGEN OM SKYDD MOT OLYCKOR (2003:778)

Begäran om stöd avser (beskriv kortfattat vilka förmågor/resurser som efterfrågas samt händelse):

Lagrum/föreskrift:
Förordning (2002:375) om Försvarsmaktens stöd till civil verksamhet
Försvarsmaktens föreskrifter (FFS 2002:7) om Försvarsmaktens stöd till civil verksamhet (§3)
Lag (2003:778) om skydd mot olyckor (LSO)

<table>
<thead>
<tr>
<th>a. Fylls i av myndighet/aktör som begär stöd:</th>
<th>Signatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum och tid för begäran</td>
<td></td>
</tr>
<tr>
<td>Myndighet/aktör</td>
<td></td>
</tr>
<tr>
<td>Framställan beslutad av (befattning och namn)</td>
<td></td>
</tr>
<tr>
<td>Direktnummer till myndighet/stab/aktör</td>
<td></td>
</tr>
<tr>
<td>Gör en bedömning avseende frågan om situationer som kan uppkomma där FM:s personal kan komma att bruka tvång eller våld mot enskilda (SFS 2002:375 §7)</td>
<td></td>
</tr>
<tr>
<td>Gör en bedömning avseende frågan om FM:s personal kan komma att användas för uppgifter som kan medföra en inte obetydlig risk för att personalen kan komma att skadas (SFS 2002:375 §10)</td>
<td></td>
</tr>
</tbody>
</table>
Övrigt:

Vid LSO (2003:778) utgår ingen ersättning till Försvarsmakten.

<table>
<thead>
<tr>
<th>Tidsnr:</th>
<th>b. Info/åtgärder fylls i av Försvarsmakten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Framställan inkom till VB Regional stab Nord, Mitt, Väst, Syd</td>
</tr>
<tr>
<td></td>
<td>Regional stabs beslut, FragO m.m.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Framställan inkom till VB FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eventuella synpunkter från JURS:</td>
</tr>
</tbody>
</table>

| INS Operationsledarens beslut: |
Blanketten skickas av Central myndighet/motsv digitalt till Vakthavande befäl Försvarsmakten (VB FM) via mail: vbfm@mil.se eller via öppen fax 08-788 77 78 (HKV sambandscentral).
För information eller frågor kontakta VB FM Telefon 08-788 81 11.

Blanketten skickas av regional/lokal myndighet eller aktör digitalt till respektive regional stab nedan:

Vakthavande befäl vid Regional stab Norr (VB RS N) inom Jämtlands-, Norrbottens-, Västerbottens- och Västernorrlands län:
Mailadress vb-mrn@mil.se, telefon 0921-34 91 00, telefax 0921-34 84 45, kryfax 0921-34 93 45.

Vakthavande befäl vid Regional stab Mitt (VB RS M) inom Dalarnas-, Gotlands-, Gävleborgs-, Stockholms-, Sörmlands-, Uppsala- och Västmanlands län:
Mailadress mrm@mil.se, telefon 08-58 45 40 42, telefax 08-58 45 40 80, kryfax 08-58 45 40 90.

Vakthavande befäl vid Regional stab Väst (VB RS V) inom Hallands-, Värmlands-, Västra Götalands- och Örebro län:
Mailadress vb-mrv@mil.se, telefon 0500-46 61 00, telefax 0500-46 61 01, kryfax 0500-46 61 02.

Vakthavande befäl vid Regional stab Syd inom Blekinge-, Jönköpings-, Kalmar-, Kronobergs-, Skåne- och Östergötlands län:
Mailadress vb-mrs@mil.se, telefon 046-36 88 00, telefax 046-36 80 50, kryfax 046-613 76.

Säkerställ alltid att begäran kommit fram genom att ringa och bekräfta!
Bilaga 3: Ifyllandeblankett, begäran om stöd från Försvarsmakten
BEGÄRAN OM STÖD FRÅN FÖRSVARSMAKTEN

ENLIGT STÖDFÖRORDNINGEN (2002:375) eller FFS 2002:7 §3
(Gäller ej räddningstjänst)

ENLIGT LAGEN OM SKYDD MOT OLYCKOR (2003:778)

Begäran om stöd avser (beskriv kortfattat vilka förmågor/resurser som efterfrågas samt händelse):

Lagrum/föreskrift:
Förordning (2002:375) om Försvarsmaktens stöd till civil verksamhet
Försvarsmaktens föreskrifter (FFS 2002:7) om Försvarsmaktens stöd till civil verksamhet (§3)
Lag (2003:778) om skydd mot olyckor (LSO)

<table>
<thead>
<tr>
<th>Datum och tid för begäran</th>
<th>Signatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myndighet/aktör</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Framställan beslutad av (befattning och namn)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direktnummer till myndighet/stab/aktör</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Gör en bedömning avseende frågan om situationer som kan uppkomma där FM:s personal kan komma att bruka tvång eller våld mot enskilda (SFS 2002:375 §7)

Gör en bedömning om det kan uppkomma situationer där FM:s personal kan komma att komma till skada. Minst JA eller NEJ ska fyllas i. GLÖM INTE ATT SIGNERA!

Gör en riskbedömning om det kan uppkomma situationer där FM:s personal kan komma att skadas (SFS 2002:375 §10)

Gör en bedömning avseende frågan om situationer som kan komma att användas för uppgifter som kan medföra en inte obetydlig risk för att personalen kan komma att skadas (SFS 2002:375 §7)

Gör en riskbedömning om det kan uppkomma situationer där FM:s personal kan komma till skada. Minst JA eller NEJ ska fyllas i. GLÖM INTE ATT SIGNERA!
Övrigt:

Vid LSO (2003:778) utgår ingen ersättning till Försvarsmakten.

<table>
<thead>
<tr>
<th>Tidsnr:</th>
<th>b. Info/åtgärder fylls i av Försvarsmakten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Framställan inkom till VB Regional stab Nord, Mitt, Väst, Syd</td>
</tr>
<tr>
<td></td>
<td>Regional stabs beslut, FragO m.m.</td>
</tr>
</tbody>
</table>

FYLLS I AV MR S

<table>
<thead>
<tr>
<th></th>
<th>Framställan inkom till VB FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eventuella synpunkter från JURS:</td>
<td></td>
</tr>
</tbody>
</table>

FYLLS I AV HKV

| | INS Operationsledarens beslut: | |
|-----------|--------------------------------| |

FYLLS I AV HKV
Blanketten skickas av Central myndighet/motsv digitalt till Vakthavande befäl Försvarsmakten (VB FM) via mail: vbfm@mil.se eller via öppen fax 08-788 77 78 (HKV sambandscentral).
För information eller frågor kontakta VB FM Telefon 08-788 81 11.

Blanketten skickas av regional/lokal myndighet eller aktör digitalt till respektive regional stab nedan:

Vakthavande befäl vid Regional stab Norr (VB RS N) inom Jämtlands-, Norrbottens-, Västerbottens- och Västernorrlands län:
Mailadress vb-mrn@mil.se, telefon 0921-34 91 00, telefax 0921-34 84 45, kryfax 0921-34 93 45.

Vakthavande befäl vid Regional stab Mitt (VB RS M) inom Dalarnas-, Gotlands-, Gävleborgs-, Stockholms-, Sörmlands-, Uppsala- och Västmanlands län:
Mailadress mrm@mil.se, telefon 08-58 45 40 42, telefax 08-58 45 40 80, kryfax 08-58 45 40 90.

Vakthavande befäl vid Regional stab Väst (VB RS V) inom Hallands-, Värmlands-, Västra Götalands- och Örebro län:
Mailadress vb-mrv@mil.se, telefon 0500-46 61 00, telefax 0500-46 61 01, kryfax 0500-46 61 02.

Vakthavande befäl vid Regional stab Syd inom Blekinge-, Jönköpings-, Kalmar-, Kronobergs-, Skåne- och Östergötlands län:
Mailadress vb-mrs@mil.se, telefon 046-36 88 00, telefax 046-36 80 50, kryfax 046-613 76.

Säkerställ alltid att begäran kommit fram genom att ringa och bekräfta!
Bilaga 4: SiTaC
SiTaC - kartsymboler vid skogsbrandsläckning

Inledning

Figur 1. Exempel på kartbild med SiTaC-symboler.
SiTaC står för Situation Tactique i Frankrike och Situazione Tattica Complessa i Italien. Systemet är utvecklat och används av Medelhavsländerna sedan åtskilliga år. I och med den stora skogsbrandsfasan i dessa länder är kartsymbolerna med avseende på skogsbrand särskilt väl utvecklade och genomtänkta.

Då skogsbrandsläckning i högsta grad är en fältmässig verksamhet med fältmässiga förhållanden, har alla grafiska symboler som används utvecklats för att vara lättbegripliga och fungera även vid svartvit presentation.

Till SiTaC-systemet med kartsymboler hör även en analysdel, närmare bestämt en katalog med tumregler för att skapa sig en bild av hur skogsbranden sprider sig över tid och längs terrängen. Dessa tumregler kan återfinnas i MSB:s vägledning i skogsbrandsläckning

Vilka är fördelarna med SiTaC för Sveriges del? Med SiTaC-systemet kommer användningen av förstärkande flygande resurser från södra Europa att effektiviseras då de flygande besättningarna som regel efterfrågar en lägesbild åskådliggjord med SiTaC-symbolerna.

En implementering av SiTaC-symbolerna i Sverige har även den fördelen att förstärkande resurser från en annan del av länet, övriga landet, från annan myndighet eller organisation snabbt kan få en bild av läget, beaktade skadeplatsfaktorer, mål med insatsen samt planerade respektive pågående taktiska åtgärder. På så vis ökar förståelsen för själva släckinsatsen samt att säkerheten för personalen på marken och i luften ökar där samtliga engagerade i insatsen på ett enkelt och överblickbart sätt kan se vara alla resurser är insatta.

SiTaC-systemet med dess kartsymboler skulle även höja medvetenheten bland svensk räddningstjänst vad gäller inverkande faktorer, möjliga taktiska åtgärder etc. vid skogsbrandsläckning.

Detta PM har tagits fram av en arbetsgrupp bestående av representanter från MSB, Halmstad räddningstjänst, Sävsjö räddningstjänst, Räddningstjänsten Östra Blekinge och Länsstyrelsen i Jönköpings län.
Användning och beskrivning

Symbolerna kan appliceras på en digital karta, ritas direkt på en papperskarta eller för hand på blankt paper/whiteboard. Symbolerna är olika till sin karaktär, där vissa symboler endast förstoras eller förminskas medan andra symboler har olika utformning och omfattning beroende på insatsens utformning och utbredning samt präglas mera av frihandsritning.

Vid en användning av SITaC-systemet i ett inledande skede av en skogsbrand, ska systemet ses som ett grovt verktyg där bland annat placeringen av de olika symbolerna på kartmaterialet inte nödvändigtvis behöver vara exakt.

Lägesbild

Inom detta användningsområde används symboler för att beskriva:
- Insatta och planerade resurser: typ av resurs och resursens geografiska placering. Resurserna anges som rutor med eventuell anropssignal eller med förkortning/klartext (övrig organisation respektive flygande enhet).
- Ledningsplats.
- Brytpunkt.
- Beskrivning av brandområdet och närliggande områden.
 o Lämpliga vattentag, deras placeringar samt en beskrivning om vilken typ av släckresurs som vattentaget ifråga lämpar sig eller är avsett för: markburna resurser, helikopter eller flygplan.
 o Topografin, närmare bestämt lutningar i terrängen. Symbolerna påvisar dels riktning på sluttningsgraden i form av skalan svag - medel - brant lutning.
 o Vägsystem, där begränsningar med avseende på typ av fordon (lätta fordon, lätta terrängfordon etc.) återfinns men även blockerad väg, avspärrad väg samt enkelriktad väg.
 o Platser i brandområdet och närliggande områden som påverkar brandens utveckling. Kan exempelvis vara förändrad bränsletyp som ger ökad/minskad spridningshastighet eller förändringar i topografi (lutningar) som ger upphov till ändrat brandbeteende.
 o Känslig punkt med avseende på WUI (Wildland Urban Interface), markerar bebyggelse, anläggning, infrastruktur, skyddsvärda objekt etc. där risken för brandspridning från skog bör beaktas.
 o Särskilda risker i form av spännings- och icke-spänningskortledning där även symbol för icke-spänningskortledning återfinns. Icke-spänningskortledning inbegriper även att kraftledningen är skyddsjordad. I symbolen anges även säkerhetsavstånd för markpersonal.
 o Helikopterlandningsplats med placering.
 o Återsamlingsplats med placering.
 o Sektorgräns anges med streckad linje.
 o Avspärrning.
- Vindriktning och vindhastighet: anges med pil i vindriktningen samt vindhastighet i m/s och även vindriktningen med bokstäver.
Brandparametrar

- Brandfrontens spridningsriktning anges med ifylld pil.
- Vänster/höger flank samt hög/låg spridningshastighet anges med icke-ifylld pil med olika storlek beroende på nivå på spridningshastighet. Syftet är bland annat att tydliggöra om någon av flankerna har en högre och mera kritisk spridningshastighet.
- Brandens utbredning: heldragen linje med tillhörande tidsangivelse anger brandens utbredning; prognostiserad utbredning anges med streck-punkt linje. Tidsangivelsen kan med fördel även innefatta datum då många skogsbränder pågår under flera dygn.
- Aktivt brandområde anges med snedställda linjer i röd färg. Konstaterat avbränt område anges med i andra riktning snedställda linjer i svart.

Taktik och åtgärder

- Vattenbombning. Med cirkel (helikopter) eller oval (flygplan) markeras område där vattenbombning från luften antingen pågår eller planeras.
- Evakuering, med cirkel - med bokstäverna EV - markeras område där evakuering antingen planeras, pågår eller har genomförts.
- Skyddslinje (syftar till att skydda objekt som bedömts vara skyddsvärt - ex. bebyggelse - och kan exempelvis vara ett mobilt slangsystem eller åtgärder vidtagna vid bebyggelse för att minimera risken för antändning eller stoppa brandutbredningen). Symbolen kan ex. kombineras med symbolen för känslig punkt (WUI) för att markera att skyddsåtgärder planeras eller genomförs i anslutning till bebyggelsen, anläggningen etc.
- Direkt angrepp ritas med linje och pilar i änden, där området där direkt angrepp pågår eller planeras. Denna symbol markerar vilken flank som personalen ska arbeta mot.
- Begränsningslinje samt våt/torr metod, med ruterformade linjer markeras området där planerad eller färdigställd begränsningslinje återfinns. Denna symbol utförs där våt respektive torr metod särskiljs (om så önskas) med bokstäverna V respektive T, alternativt att symbolen ritas i blått för den våta och i rött för den torra.
- Tändning markeras med linje och pil där pilen anger önskad spridningsriktning.
Symbolbibliotek

Anpassning av symbolbibliotek - Sverige
Symbolerna i symbolbiblioteket nedan skiljer sig åt, i vissa fall, jämfört med motsvarande SiTaC-symboler som används i Medelhavsländerna. Skillnaden består dels i utseendet i en del fall men även att det svenska symbolbiblioteket är utökat med ytterligare symboler. Ett enklare infoblad på portugisiska, spanska, franska, italienska och kroatiska kommer att finnas tillgängligt under sommaren 2019 för att beskriva det "svenska" SiTaC-biblioteket för eventuellt anländande resurser från södra Europa.

Insatsområde

<table>
<thead>
<tr>
<th>Vattentag</th>
<th>Vattentag för markburna resurser såsom tankbil, motorspruta etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Helikopter</td>
</tr>
<tr>
<td></td>
<td>Flygplan</td>
</tr>
</tbody>
</table>

Sluttningar (pilen ska peka i nedåtgående riktning)

<table>
<thead>
<tr>
<th>Pilen</th>
<th>Omskiftning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Svag lutning</td>
</tr>
<tr>
<td></td>
<td>Medel lutning</td>
</tr>
<tr>
<td></td>
<td>Brant lutning</td>
</tr>
</tbody>
</table>

Vägar

<p>| 1:1 | Väg tunga fordon |
| 4x4 | Väg tunga terrängfordon |
| | Väg lätta fordon |
| 4x4 | Väg lätta terrängfordon |</p>
<table>
<thead>
<tr>
<th>Väg blockera</th>
<th>Väg blockerad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planerad avstängd väg</td>
<td></td>
</tr>
<tr>
<td>Avstängd väg</td>
<td></td>
</tr>
<tr>
<td>Enkelriktad körriktning. Halva pilspetsen indikerar körriktning.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Riskobjekt och skyddsobjekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturliga förändringar som påverkar brandens utveckling, ex förändringar i vegetationen som leder till ökning eller minskning av spridningshastigheten eller brandbarriär.</td>
</tr>
<tr>
<td>Känslig punkt med avseende på WUI (Wildland Urban Interface), dvs byggnader, infrastruktur, skyddsvärda objekt etc.</td>
</tr>
<tr>
<td>Spänningsatt kraftledning, 10 m säkerhetsavstånd</td>
</tr>
<tr>
<td>Spänningslös och skyddsjordad kraftledning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Övrigt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helikopterlandningsplats</td>
</tr>
<tr>
<td>Återsamlingsplats (utrymning)</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>SEKT</td>
</tr>
<tr>
<td>Sektorgränspunkt</td>
</tr>
<tr>
<td>Planerad avspärrning</td>
</tr>
<tr>
<td>Avspärrning</td>
</tr>
</tbody>
</table>

Branden

- Brandfrontens spridningsriktning
- Brandens startpunkt
- Höger flank, hög spridningshastighet
- Vänster flank, låg spridningshastighet

Prognostiserad utbredning med tidsangivelser

- 14:15
- 16:15
Aktivt eldband

Icke-aktivt eldband

Aktivt brandområde

Konstaterat avbränt område

Vindriktning och vindhastighet

Pilen anger vindriktningen; vindstyrkan anges i m/s; bokstaven anger varifrån det blåser (i detta fallet från väster).

Åtgärder

Planerad eller pågående vattenbombning med helikopter. Vid pågående vattenbombning kompletteras symbolen med aktuell resurssymbol.

Planerad eller pågående vattenbombning med flygplan. Vid pågående vattenbombning kompletteras symbolen med aktuell resurssymbol.

Genomförd vattenbombning med helikopter
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Genomförd vattenbombning med flygplan</td>
</tr>
<tr>
<td></td>
<td>Planerad evakuering</td>
</tr>
<tr>
<td></td>
<td>Pågående evakuering</td>
</tr>
<tr>
<td></td>
<td>Genomförd evakuering</td>
</tr>
<tr>
<td></td>
<td>Planerad eller pågående skyddslinje. Vid pågående skyddslinje kompletteras symbolen med aktuell resurssymbol.</td>
</tr>
<tr>
<td></td>
<td>Färdigställd skyddslinje</td>
</tr>
<tr>
<td></td>
<td>Planerat eller pågående direkt angrepp. Vid pågående direkt angrepp kompletteras symbolen med aktuell resurssymbol.</td>
</tr>
<tr>
<td></td>
<td>Genomfört direkt angrepp</td>
</tr>
<tr>
<td></td>
<td>Färdigställd begränsningslinje, våt metod</td>
</tr>
<tr>
<td>T</td>
<td>Färdigställd begränsningslinje, torr metod</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Planerad eller pågående tändning på linje. Vid pågående tändning kompletteras symbolen med aktuell resurssymbol.</td>
</tr>
<tr>
<td></td>
<td>Genomförd tändning på linje</td>
</tr>
</tbody>
</table>

Resurser

<p>| 255-1040 | Planerad räddningstjänstresurs |
| 255-1040 | Räddningstjänstresurs på plats |
| 355-9110 | Planerad ambulansresurs |
| 355-9110 | Ambulansresurs på plats |
| 155-1110 | Planerad polisresurs |
| 155-1110 | Polisresurs på plats |
| FM | Planerad övrig resurs (organisationen anges med förkortning eller i klartext i rutan). |
| FM | Övrig resurs på plats |
| HELI 01 | Planerad flygande enhet |
| HELI 01 | Flygande enhet på plats |
| LP | Planerad ledningsplats |</p>
<table>
<thead>
<tr>
<th>LP</th>
<th>Befintlig ledningsplats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Planerad brytpunkt</td>
</tr>
<tr>
<td></td>
<td>Befintlig brytpunkt</td>
</tr>
</tbody>
</table>