Integrerad regional riskbedömning och riskhantering

L U C R A M
Lund University Centre for Risk Analysis and Management

Jerry Nilsson
Sven Erik Magnusson (projektledare)
Per-Olof Hallin
Bo Lenntorp
Abstract

The purpose of this study is to make a review of the topic Integrated Regional Risk Assessment and Safety Management, IRRASM. The idea of an integrated regional approach is to get a better overview of the whole risk situation in a specific region than what is possible when applying a traditional object-orientated procedure.

The integrated, regional methodology should be particularly significant since the awareness of risks on a society basis has increased over the last years, nationally and internationally. In Sweden for instance, The Agency for Civil Emergency Planning, ÖCB, has strongly supported a more robust society. A link is therefore established in the report between IRRASM and the concept of a robust society, as defined by ÖCB.

IRRASM is mainly a framework, promoting the use and integration of several methods and tools to establish a concise picture of the risks in a region. In the report a review is being made on techniques and tools that may be appropriate to use in an integrated regional risk assessment study. Main focus is on vulnerability analysis, adopting system-thinking, decision-aiding techniques based on multi criteria analysis and GIS combined with various risk-analysis models to calculate and illustrate risks from various hazardous discharges in a region.

A minor survey is also made considering where, and in what areas, IRRASM-approaches have been implemented. The main result of the study is that the integrative regional approach seems to be highly appropriate for assessing the risks on a society basis. However, the findings in the report still raise many questions in need of answers. Therefore some suggestions for further studies are made.
Summary
The society of today is becoming more and more complex due to a continuous and extended integration of various systems and functions. This implies a strong interdependence between the different parts of the society. What happens in one place will have effects in other areas as well (geographically and functionally). From a “risk-point-of-view” this means that it may be difficult to assess the extension of different risks from their origin place and also very difficult to predict them. This calls for a holistic approach when assessing risks. The traditional way to analyse and evaluate risks is to focus on a single object. As a response to this (too) narrow approach when dealing with risks in different areas, efforts are made to include various factors and aspects relevant for determining the risk on a broad base. Gheorghé et al (1995) have developed a framework called IRRASM, “Integrated Regional Risk Assessment and Safety Management”, which roughly may be described as a comprehensive guideline for assessing risks in larger industrial areas.

The purpose of this report is to more closely examine IRRASM and other methods, models and tools employing a regional and integrative approach to deal with risks. A special interest has been taken in methods that are linked to the ideas of a robust society (as it is defined by, “The Agency for Civil Emergency Planning, ÖCB”).

In the first part of the report some basic definitions of risk are presented as well as some different perspectives of the concept. Then follows a description of the traditional way of making a risk analysis (i.e. the object orientated method), focusing on health, safety and environment related issues. Some qualitative and quantitative methods are presented. The subject of risk evaluation and risk reduction activities is also briefly accounted for.

After the introduction, a more thorough review of IRRASM is given. IRRASM originates from two other projects. One is the “Inter-Agency Programme on the Assessment and Management of Health and Environmental Risks from Energy and Other Complex Industrial Systems” initiated in 1986 by IAEA, UNEP, APELL, UNIDO and WHO. The second is the “Polyproject on Risk and Safety of Technical Systems” initiated by The Swiss Federal Institute of Technology in Zürich. Gheorghé and Nicolet-Monnier have subsequently based their work on IRRASM on these two projects.

IRRASM is mainly a framework, promoting the use and integration of several methods, tools and perspectives to establish a concise assessment of the risks in a region. The idea is to include in the analysis all relevant risk objects and all stakeholders with an interest in the problem (i.e. people owning the problem or being affected by it). The IRRASM-guideline emphasises the importance of including knowledge from many different scientific disciplines (experts) as well as the public view in the process.

In the report a review is made on techniques and tools that may be appropriate to use within the IRRASM-framework. Three areas are especially notable;

- Vulnerability analysis.
- Decision-aiding techniques based on multi criteria analysis.
- GIS combined with various risk-analysis models to calculate and illustrate risks

The vulnerability analysis is based on system thinking and attempts to answer the question of the survival capability of the system (its robust and resilient) when considering the threats it is
Abstract

facing. Focus is on what resources are at hand to reduce damage from accidents originating inside or outside the system. In the report some scenario-based guidelines are presented.

An important area when dealing with risks in a complex environment is how to make best possible decisions (i.e., the alternative that best take in consideration the different criterions). In the report an overview is made on “Multi Criteria Decisionmaking, MCDM” and how it can be integrated with “Spatial Decision support Systems, SDSS” in order to help a (non-expert) decision maker to come up with best possible solution in a region characterised of conflicting interests.

Explicitly treating risk as a spatial (regional) problem requires the use of tools to easily and effectively analyse and present the risk-situation and its geographical dimensions. Geographic information system, GIS, may be regarded as a universal tool within the field of risk assessment and risk management. GIS can be used on its own or integrated with other methods, tools or techniques, e.g., MCDM and SDSS. GIS is often combined with various risk-analysis models to calculate and illustrate risks, e.g., from various hazardous discharges in a region. Furthermore GIS is a central tool when it comes to operational risk management, i.e., dealing with risks as they happen in real time. When integrating GIS with GPS-technique and remote sensing the potential in vulnerability and risk management could be very significant.

The regional integrative approach on risk has above all had an impact in two areas; assessing risks from discharges of hazardous substances and methods aiming to integrate all actors affected by a risk related problem when making decisions how to deal with it. In both cases GIS, MCD, SDSS and Internet are used in combinations to a wide extent.

When examining in which countries it is possible to find traces of the integrative regional risk approach, Western Europe (e.g., Holland, Switzerland, Sweden, Norway and Iceland) and USA stand out. However the trends of making comprehensive risk analyses and risk assessments seems to be worldwide. Due to limited resources it has not been possible to make a comprehensive worldwide overview on this issue. A similar outlook of the subject in Sweden reveals that the same tendency seems to be found here as well. A number of authorities and researchers have a part in this process.

The most important conclusions are:

• The integrative and regional approach gives better and more accurate results when dealing with risks in larger industrialised areas.

• IRRASM is a framework promoting the use of a multitude of methods, models, techniques and tools when assessing and managing risks. It exists a number of methods, models and techniques suitable to include in an integrative regional risk analysis. When combined in various constellations they create new and powerful conditions for assessing and managing risks.

• A multidisciplinary approach when dealing with risks ought to raise the probability that the risks are considered from a number of important viewpoints. Thus eventually leading to a better public acceptance of risk-related activities in the society.
Integrerad regional riskbedömning och riskhantering
Sammanfattning

Som ett svar på den alltmer komplexa risksituationen i större industrialiserade områden och det allt mer uppenbara behovet av att mäta och hantera den totala risksituationen har flera projekt initierats med syftet att utveckla en integrativ risksyn. Utgångspunkten för undersökningsmaterialet har varit regionen istället för objektet. IRRASM, Integrated Regional Risk Assessment and Safety Management har trätt fram som ett samlande begrepp för hur man kan utföra integrerade och rumsbaserade riskbedömningar och kan ses som ett mjukt ramverk, en vägledning, med råd om hur man genomför en integrativ regional ansats.

Syftet med föreliggande rapport har varit att kvalitativt göra en litteratursammanställning över IRRASM och de integrativa och regionala anstalter för att bedöma och hantera risker som kan samlas under begreppet. Detta har gjorts med utgångspunkt på relevansen för ett mer robust och resilient samhälle så som det utvecklats av bl a Överstyrelsen för civil beredskap, ÖCB. Det robusta samhället karakteriseras av att samhällets alla dimensioner (ekologiska, sociala, tekniska och ekonomiska) är väl utvecklade och tål en större påfrestning. Strävan efter det robusta samhället kräver en metodik som kan ta ett helhetsgrepp för att bedöma och hantera riskerna. Kopplingen till IRRASM är tydlig.

Som en bakgrund till det integrativa regionala synsättet på risk redogörs för den utveckling som skett inom området riskhantering. Länge har det tekniska perspektivet varit det vetenskapligt accepterade och dominerande. Enligt detta synsätt är risk en sammanvägning mellan sannolikhet och konsekvens för att en viss (oftast oönskad) skadlig händelse skall inträffa. Det samhällsvetenskapliga synsättet inkluderar en mer nyanserad bild av riskbegreppet och föresprår att kvalitativa, subjektiva, egenskaper hos den skadliga händelsen bör influera i vilken mån den är att betrakta som en (stor eller liten) risk. Undersökningar har visat på att faktorer som frivillighet för att utsätta sig för risk, vilken kontroll och erfarenhet man har av risken, etc har stor betydelse för den individuella riskuppfattningen. En översikt görs över några sådana faktorer och på vilket sätt det samhällsvetenskapliga betraktelsesättet kan berika riskbegreppet.

I rapporten redogörs för två större projekt som har banat vägen för IRRASM. Det första är The Inter-Agency Programme on the Assessment and management of Health and Environmental Risks from Energy and Other Complex Industrial Systems som initierades 1986 av IAEA, UNEP, APELL, UNIDO och WHO. I denna utvecklas en metodik för att göra integra-
Integriterad regional riskbedömning och riskhantering

tiva riskbedömningar i en större industrialiserad region. En översyn görs av olika bedöm-
ningsmetoder för punktvisa utsläpp, transport av farligt gods, den organisatoriska strukturen
etc. Det andra projektet, *The Polyproject on Risk and Safety of Technical Systems*, drogs
igång av *The Swiss Federal Institute of Technology* i Zürich. Resultatet av projektet blev en
handledning av rådgivande karaktär för hur en integrativ regional riskbedömning bör genom-
föras.

Medarbetare i de båda ovan nämnda projekten var bl a professor Adrian V Gheorghe vid
ETH, *Swiss Federal Institute of Technology*, Zürich. Tillsammans med Michel Nicolet-
Monnier, också han engagerad i arbetet med integrativa riskstudier för större industrialiserade
regioner, har Gheorghe lanserat IRRASM, *Integrated Regional Risk Assessment and Safe-
ty/(Hazard) Management* som ett ramverk för samlad riskbedömning i sådana områden.

En IRRASM-studie kretsar kring riskbilden i ett avgränsat större område och syftar till att
försöka ge en så samlad och signifikant bild av risksituationen i ett område som möjligt. IRR-
RASM är endast en övergripande strategi och vägledning för hur olika metoder kan användas
för att ge en samlad bedömning av riskerna. I rapporten presenteras en översikt över några
metoder, modeller och verktyg som skulle kunna ingå i en IRRASM-studie. Framför allt kan
tre områden nämnas:

- Sårbarhetsanalysen
- Beslutsmetoder baserade på multikriteriemetoder och/eller i kombination med
- GIS för att åskådliggöra och beräkna risker

Sårbarhetsanalysen är en utveckling av riskanalysen men skiljer sig på flera punkter. Medan
riskanalysen främst ser till händelser inom ett systems fysiska gränser arbetar sårbarhetsana-
lysen med en öppen systemmodell och beaktar såväl interna som externa konsekvenser. Sär-
skilt intresse riktar sig till systemets överlevnadsförmåga och därför betonas i högre grad än vad
som är brukligt i en riskanalys, skadereducerande faktorer. Sårbarhetsanalysen anlägger också
ett långt tidsperspektiv och fokuserar på ett förlopp från det att en störning inträffar till att ett
nytt stabilt tillstånd uppnåtts.

Att betrakta risker i ett rumsligt samhällsperspektiv åskådliggör ett komplext nät av motstridi-
ga intressen. Att *ta beslut* i sådana situationer och beakta alla perspektiv och den relativa be-
tydelsen (rangordningen) av dessa kräver någon form av hjälpmedel. *Multikriteriemetoder* ger
ett stöd för att ta beslut i sådana situationer. Några vanliga teoretiska och praktiska metoder
presenteras för beslutsfattande och rangordning, bl a AHP-metoden och miljöolycksindex.
Multikriteriemetoder kan även kopplas ihop med *beslutsstödjande system* (SDSS) som infogar
expertbedömningar och optimeringsmodeller i multikriteriemetoderna. Sådana metoder blir
allt vanligare genom att datorer länkas i nätverk, t ex Internet.

Risker är onödiga ett rumsligt problem. Genom att ta fasta på det i riskbedömningar krävs
det stöd av verktyg som kan analysera och åskådliggöra de rumsliga aspekterna. Geografiska
Informationssystem, *GIS*, utgör på flera sätt ett universalverktyg för riskhantering. Det kan
åskådliggöra geografiska problem och förhållanden, kopplas ihop med multikriteriemetoder
och beslutsstödjande system, spridningsmodeller, etc.

GIS fyller också en viktig funktion vad beträffar den operativa sidan av riskhantering. Att
hantera risker operativt innebör att försöka ta itu med dem i realtid, d v s när en olycka inträf-
far. Det gäller att göra sig oberoende av tid och rum. För detta krävs assistans från flera tek-

Vad beträffar inom vilket område integrativa regionala studier rent praktiskt fått ett fäste märks framför allt olika ansatser med spridningsmodeller och metoder för att integrera flera aktörer än vad som är brukligt i beslutsfattandet. I det senare fallet rekommenderas i förekommande fall diskussionstekniker och att använda sig av multikriteriemetoder, beslutsstödjande system och GIS. Spridningsmodeller har även använts tillsammans med GIS, multikriteriemetoder och rumsligt beslutsstödjande system (SDSS), bl a för att försöka fördela riskerna mer ”rättvist” i ett samhälle.

En kort genomgång görs av i vilka länder som de integrativa regionala riskbedömningsmetoderna vuxit fram och varför. Här märks framför allt industrialiserade och tätbefolkade länder som Holland och Schweiz där det är tätt mellan riskkällorna och en olycka kan få stora och allvarliga konsekvenser. I dessa länder fanns det en allmän misstro till att myndigheterna vid stora infrastrukturrella projekt verkliga tagit hänsyn till alla viktiga aspekter i en riskbedömning. Detta lede till att myndigheterna var tvungna att utveckla en integrativ riskmetodik som IRRASM för att kunna genomföra projekten. Integrativa ansatser har därefter utvecklats i flera andra länder. Sårbarhetsanalyser används t ex i Sverige, Norge, Island och USA. Tenden mot att ta allt bredare hänsyn vid bedömning och hantering av risker verkar given.

För Sveriges del har undersökts på vilket sätt ett integrativt rumsbaserat tillvägagångssätt för att bedöma risker har kommit till uttryck, och likaså exempel på var. Ansatserna spänner över ett brett område, allt ifrån metoder för att hantera statistik på ett standardiserat sätt från flera olika källor till metoder för att bedöma områden vars mark är förorenad av flera olika ämnen med varierande egenskaper. Såväl myndigheter (ÖCB, FOA, Kommunförbundet) som universitet och högskolor är inbegripna i processen.

Några av de allmänna slutsatser som kan dras av studien är att:

- Ur ett samhällsperspektiv där riskerna synes vara komplexa och svåröverskådliga är det angeläget att anlägga en integrativ syn på problematiken istället för ett objektbetonat perspektiv. På så sätt är det möjligt att uppnå en mer samlad bild av riskproblematiken och på sikt även att reducera sårbarheten i samhället.

- Att utgå från rummet istället för de enskilda objekten är en god utgångspunkt för att kunna genomföra en integrativ och samlad bedömning.

Rapporten har givit upphov till flera frågor. Särskilt berör dessa de metoder, modeller och verktyg som skulle kunna utvecklas i en integrativ regional riskbedömning, d v s sårbarhet-
Innehåll

Abstract ..3
Sammanfattning ..6
Innehåll..6

1 Inledning..6
1.1 Bakgrund..6
1.2 Målsättning och frågeställningar ..6
1.3 Metod, material och avgränsningar ..6
1.4 Struktur ..6

2 Definitioner ..6
2.1 Risk ..6
2.2 Olika riskperspektiv ...6
 2.2.1 Teknisk riskdefinition – enkla metoder att redovisa risk ..6
 2.2.2 Beteendeorienterande aspekter på definitionen av risk ..6
2.3 Risktyper ..6
2.4 Det robusta samhället ..6
2.5 Integrativa regionala riskaspekter ...6

3 Metoder för teknisk, objektbetonad riskbedömning och riskhantering6
3.1 Definitioner ..6
3.2 Riskbedömning ...6
3.3 Teknisk riskanalys - en internationell standard ...6
3.4 Praktiska tillvägagångssätt vid utförande av en teknisk riskanalys6
 3.4.1 Kvalitativa metoder ...6
 3.4.2 Semi-quantitativa metoder ..6
 3.4.3 Kvantitativa metoder ...6
3.5 Olycksrisker – övriga typer av risker ...6
3.6 Något om osäkerhetsanalys – kvalitetssäkring av riskanalys ..6
3.7 Riskevaluering ...6
3.8 Riskreducerande/preventiva åtgärder ..6

4 IRRASM – en rumslig integrativ ansats ..6
4.1 Bakgrund, historik ..6
 4.1.1 Inter-Agency Programme on the Assessment and management of Health and Environmental
 Risks from Energy and Other Complex Industrial Systems ..6
 4.1.2 The polyproject on risk and safety of technical systems ..6
4.2 Metodologiska frågor inom IRRASM ...6

5 Sårbarhetsanalys ...6
5.1 Definition av sårbarhetsanalys ...6
5.2 Metoder för att mäta och jämföra sårbarhet ..6
5.2.1 Sårbarhetsmatriser ... 6
5.2.2 Nyckeltal och indikatorer för närsamhällets robusthet (semi-kvantitativ metod) 6
5.2.3 Sårbarhet i tekniska system .. 6
5.2.4 FEMA’s guide för krishantering i företag 6
5.2.5 Risk- och sårbarhetsanalyser i kommuner 6

6 Beslutsmetoder .. 6
6.1 Inledning, definitioner MCDM, MADM, MCA, SDSS .. 6
6.2 Verktyg för det totala beslutsproblemet ... 6

7 Ranking-metod byggd på viktning av parameter ... 6
7.1 Allmän karakterisering Multi Attribute Decision Making-metoder 6
7.2 Analytic Hierarchy Process .. 6
7.2.1 Beskrivning .. 6
7.2.2 Problemstrukturering .. 6
7.2.3 Parvis jämförelse ... 6
7.2.4 Begreppsnärhet/Möjligheter .. 6

8 Praktiska exempel på index eller MCA-metoder .. 6
8.1 Vattenkvalitet .. 6
8.2 Miljöölycksindex .. 6
8.3 Indexmetoder och bestämning av brandsäkerhet .. 6
8.4 MADM och fysisk planering ... 6

9 GIS och risker ... 6
9.1 Kunskapsöversikt GIS .. 6
9.2 GIS som ett verktyg för att visa spridning av utsläpp och beräkna riskavstånd 6
9.3 GIS, multikriteriemetoder och beslutsstödande system, SDSS 6

10 Verktyg för operativ riskhantering med stöd av GIS och GPS 6
10.1 Översiktlig genomgång .. 6

11 IRRASM-ansatser i praktiken .. 6
11.1 Inledning .. 6
11.2 Praktiska ansatser till integrerade studier byggda på spridningsmodeller 6
11.2.1 Spridningsmodeller och beslutsstödande system – fallstudier 6
11.2.2 Transport av farligt gods – konventionell riskanalys 6
11.2.3 Transport av farligt gods – Hot Spots .. 6
11.2.4 ARIPAR-projektet .. 6
11.2.5 XENVIS ... 6
11.2.6 Produktsyn istället för produktionssyn .. 6
11.2.7 Strategiska helhetsmässiga metoder ... 6

11.3 Metoder för att integrera flera olika aktörers åsikter .. 6
11.3.1 GIS, MCA och SDSS i nätverk, några exempel på fungerande riskverktyg 6
11.3.2 Diskussionsbaserade tekniker för att integrera flera aktörer i besluten 6

12 Internationella utvecklingsläget för IRRASM ... 6
12.1 Exempel på miljöer där integrativ regional riskhantering initierats och tillämpas 6

13 Översikt över analysläget för IRRASM i Sverige med inriktning på det robusta samhället 6
Innehåll

13.1 Miljöer och projekt .. 6
13.1.1 Överstyrelsen för Civil Beredskap .. 6
13.1.2 Försvarets forskningsanstalt ... 6
13.1.3 Svenska kommunförbundet .. 6
13.1.4 Tekniska högskolor och Universitet .. 6
13.1.5 Naturvårdsverket ... 6
13.1.6 Räddningsverket ... 6
13.1.7 Boverket ... 6
13.1.8 Riskstatistik .. 6

14 Slutsatser, frågeställningar och angelägna forskningsprojekt .. 6

14.1 Diskussion ... 6
14.2 Slutsatser .. 6
14.3 Skiss till ett antal FoU-projekt för vidare utredning .. 6
14.3.1 Översikt av integrationsdimensioner. Ramprogram för forskning ... 6
14.3.2 Testa någon tillgänglig datormodell på svenska förhållanden vad beträffar olycksrisker och risker mot hälsa och miljö .. 6
14.3.3 Utredning av beslutsmodeller framför allt MADM .. 6
14.3.4 Sårbarhetsanalyser för några tekniska system .. 6
14.3.5 Utreda scenariobaserade sårbarhetsanalyserns förmåga att granska olika system .. 6
14.3.6 Jämförelse mellan olika metoder att rangordna risk och sårbarhet: PRA – indexmetoder – sårbarhetsanalys .. 6
14.3.7 Hur kan ett IRRASM-angreppssätt tillämpas i en region? .. 6

Bilaga 1 Kvantitativa riskbedömningar .. 6
A. Beräkning av olycksrisker ... 6
14.3.8 Individuella riskmått... 6
14.3.9 Samhällsrisker ... 6
B. Hälso- och miljörisker relaterade till exponering för kemikalier .. 6

Bilaga 2 Praktisk användning av AHP-metoden ... 6

Bilaga 3 Översikt över verktyg för bedömning av olika alternativ i en beslutsprocess .. 6

Bilaga 4 Matris över två integrationsdimensioner ... 6

Bilaga 5 Översikt över några spridningsmodeller ... 6

Referenser ... 6

Tryckta källor .. 6

Internet .. 6
1 Inledning

1.1 Bakgrund

Integrerad riskbedömning har åtminstone två åtskilda ursprungsmiljöer. En som är orienterad mot teknologiska riskkällor, byggd på användning av felträd och händelseträd och med ur- sprunglig användning inom kärnkraft- och kemisk processindustri; en annan som är orienterad mot studier av transport, exponering och effekt av giftiga ämnen, miljökonsekvensbeskrivningar och epidemiologiska studier. Integrerad riskbedömning länkar samman dessa angreppssätt och försöker dessutom kombinera mer än en källa och mer än en receptor; bedömningen sker över en definierad region.

För mer än 10 år sedan började systematiska studier på området bedrivas inom länder som Holland, Schweiz och Österrike. En betydande kunskaps- och informationsbas har ackumulerats under denna period. Målsättningen med föreliggande rapport är att ge en översikt över området samt föreslå lämpliga nationella forsknings- och utvecklingsprojekt1.

1.2 Målsättning och frågeställningar

Initiellt förutsattes att översikten skulle begränsas till riskkällor av typen kemiska processanläggningar, transport av farligt gods samt naturrisker som översvämningar och extrema stormar. En anledning var att utländska IRRASAM-studier koncentrerats till dessa riskkällor. Under utredningens gång har uppmärksamheten alltmer kommit att koncentreras på samhällets förmåga att från en mycket vidare aspekt klara av hot och påfrestningar. Utgångspunkten är därför samhällets robusthet och de metoder för analys av robusthet som tagits fram. Projektets målsättning kom därför att utökas till att undersöka i vad mån begreppet "integrerad" kan utökas till att täcka in flera av de risktyper som ingår i begreppet samhällets sårbarhet och robusthet.

1 Projektet har finansierats av ÖCB
Integrerad regional riskbedömning och riskhantering

olika typer av risker? Vilka metoder är användbara och vilken roll kan Geografiska Informationssystemet spela för att t.ex. visualisera och analysera risklandskap?

Det är naturligtvis omöjligt att inom ramen för ett inledande pilotprojekt ge svar på dessa frågor, målsättningen måste inskränkas till en grov kunskapsöversikt. Som framgår av rapporten är redan detta en uppgift av utmanande karaktär och storleksordning.

1.3 Metod, material och avgränsningar
Även då ambitionen inte har kunnat utsträckas till att fullödigt försöka besvara frågorna ovan har dessa likväl varit vägledande för rapportens utformning och målsättning. Resultatet är en översiktlig sammanställning, en inventering av metoder, modeller och verktyg som anknyter till ett integrativt, regionalt angreppssätt för att bedöma risker. Rapporten omfattar såväl en genomgång av teoretiska metodbeskrivningar som exempel på konkreta projekt som nyligen genomförts, eller håller på att genomföras.

1.4 Struktur
Rapporten består av fjorton kapitel som utöver en inledning inordnats i fyra delar. Den första delen (avsnitt 2) behandlar definitioner av riskbegreppet samt ger en översikt över några olika risk perspektiv. Vidare redogörs kort för vad ett robust samhälle är och varför det det är angeläget att försöka utforma samhället så att det blir mer motståndskraftigt och resilient för
påfrestningar. Slutligen diskuteras vad som kan avses med integrativa och regionala aspekter och utgångspunkter i bedömning och hantering av risk.

I del tre (avsnitt 11-13) görs en kortare översikt över var, på vilket sätt och i vilka sammanhang IRRASM-ansatser utvecklats, för Sveriges del såväl som internationellt. I del fyra (avsnitt 14) förs en diskussion och dras slutsatser utifrån det material som presenterats. Slutligen skisseras ett antal FoU-projekt för att besvara frågor som vuxit fram till följd av genomgången.
Integrerad regional riskbedömning och riskhantering
Del I

Definitioner
2 Definitioner

2.1 Risk

Inom ämnesområdet riskhantering förekommer idag en mängd begrepp och uttryck.

Det mest centrala begreppet i den här rapporten, och samtidigt ett av de mest svårdefinierade, är risk. Det kan definieras utifrån flera olika kriterier och synsätt men det existerar två större grenar; det tekniska och det beteendeinriktade (perceptionsbaserade, socialkonstruktivistiska) perspektivet. Enligt det tekniska betraktelsesätt kan riskerna beräknas kvantitativt efter strikt fastställda definitioner. Motpolen till det tekniska perspektivet är den samhällsvetenskapliga, beteendeinriktade, disciplinen som strävar efter att integrera allmänhetens subjektiva värderingar i riskbegreppet. Också inom de båda avdelningarna finns en spännvidd av variationer och åsiktsskillnader (se avsnitt 2.2.1 och 2.2.2).

Även om det förekommer flera motsättningar i sättet att betrakta risk finns det ändå en kärna av samförstånd, i alla fall på en abstrakt nivå. Renn (1998) menar t ex att alla riskkoncept har en gemensam nämnare, de gör en åtskilnad mellan verklighet och möjlighet. Oftast, men inte nödvändigtvis, innebär detta sannolikheten för att en oönskad händelse skall inträffa. Även detta påstående är emellertid en sanning med modifikation eftersom det kan konstateras att vissa individer frivilligt utsätter sig för risker för att åtnjuta den spänning som det kan innebära.

Begreppsskillnader kan även ha sin orsak i vilka risker som är i fokus för en undersökning, d v s vilket riskperspektiv som föreligger. Synen på sannolikhet (för att en oönskad händelse skall inträffa) skiljer sig t ex åt mellan beräkningar av hälsorisker och olycksrisker, något som bl a redovisas närmare i avsnitt 3.5. I det följande avsnittet demonstreras emellertid först några av de vanligaste riskperspektiven som förekommer.

2.2 Olika riskperspektiv

Integrierad regional riskbedömning och riskhantering

Tabell 2.1 Översikt över olika riskperspektiv
Källa: Renn 1998

<table>
<thead>
<tr>
<th>Integrierade metoder</th>
<th>Försäkringsmässig metod</th>
<th>Toxikologi - epidemiologi</th>
<th>Sannolikhetsinriktad riskanalyss (PRA)</th>
<th>Ekonomiska aspekter</th>
<th>Riskpsykologi</th>
<th>Sociala riskteorier</th>
<th>Kulturella riskteorier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basenhet</td>
<td>Förväntat värde</td>
<td>Beräknade förväntade värden</td>
<td>Tillverkade förväntade värden</td>
<td>Förväntad nytta</td>
<td>Subjektivt förväntad nytta</td>
<td>Rättvisesynpunkter och social kontext</td>
<td>Gemensamma värden</td>
</tr>
<tr>
<td>Standard-metod</td>
<td>Extrapolering</td>
<td>Experiment</td>
<td>Händelseträds- och felträdanalyser</td>
<td>Jamförelse risk-nytta</td>
<td>Psykiometri</td>
<td>Faltunderstämmningar</td>
<td>Strukturella analyserer</td>
</tr>
<tr>
<td>Omfattning</td>
<td>Universell</td>
<td>Hälso och miljö</td>
<td>Säkerhet</td>
<td>Universell</td>
<td>Individuell perception</td>
<td>Multidimensionell</td>
<td>Multidimensionell</td>
</tr>
<tr>
<td></td>
<td>Endimensionell</td>
<td></td>
<td>Endimensionell</td>
<td>Endimensionell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundläggande problemområden</td>
<td>Prediktiv förmåga</td>
<td>Förutse exponering</td>
<td>Bakgrundsfall</td>
<td>Common mode fallurres</td>
<td>Gemensam måttstock</td>
<td>Social relevans</td>
<td>Komplexitet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Större tillämpningsområden</td>
<td>Försäkringar</td>
<td>Hälso</td>
<td>Sakerhets-teknik</td>
<td>Beslutsfattande</td>
<td>Politiskt beslutsfattande och regelverk</td>
<td>Konfliktlösning</td>
<td>Riskkommunikation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huvudsakliga funktioner</td>
<td>Riskfördelningsning</td>
<td>Tidiga varningar</td>
<td>Gränsvärden</td>
<td>Förbättra system</td>
<td>Resursallokering</td>
<td>Individuell riskacceptans</td>
<td>Politisk acceptans</td>
</tr>
<tr>
<td>Sociala funktioner</td>
<td>Bedömning</td>
<td>Riskreduktion och val av policy</td>
<td>Hantering av osäkerhet</td>
<td>Politisk tillämpning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

det går att samordna de beteendeinriktade och de tekniska perspektiven utan att gå in på monetära termer.

För att kunna ta tillvara de olika perspektiven i tabell 2.1 i en undersökning krävs det metoder som är integrativa till sin karaktär. Detta illustreras av att pilar pekar från varje kolumn till rutan integrerade metoder. Ju fler områden som integreras i en studie desto mer samlad (men också mer komplex) blir troligtvis riskbilden.

I avsnitt 2.2.1 och 2.2.2 görs en närmare beskrivning av det tekniska och det beteendeinriktade synsättet på risk. Den tekniska riskdefinitionen kan betraktas som den grundläggande vetenskapliga definitionen utifrån vilken den beteendeinriktade har utvecklats. Därför redogörs först den tekniska preciseringen för att sedan övergå till den sociala och kulturella.
2.2.1 Teknisk riskdefinition – enkla metoder att redovisa risk

Sannolikheten för att de olika händelserna (och dess konsekvenser) skall inträffa kan bl a illustreras med hjälp av händelseträd, felträd och riskprofiler. Syftet med ett händelseträd är att identifiera de olika konsekvenser som kan bli resultatet av att en händelse inträffar. Såväl sannolikhet som konsekvensens storlek inkluderas (se figur 2.1) I ett felträd söker man istället efter orsakerna till en händelse. Riskprofiler används bl a för att jämföra olika olycksutfall med varandra. Nedan visas i ett starkt förenklat och nedskalat exempel hur en riskprofil kan konstrueras för en initierande olycka (brand uppstår) i ett rum utrustat med sprinkler och brandgasventilation.

\[
\text{Sprinkler} \quad \text{Brandgasventilation} \quad \text{Skadekostnad} \quad \text{Sannolikhet}
\]

\[
\begin{align*}
\text{Fungerar} & \quad 75\% \quad 100 \text{kkr} \quad 0,6 \\
\text{Fungerar ej} & \quad 25\% \quad 250 \text{kkr} \quad 0,2 \\
\text{Fungerar} & \quad 75\% \quad 350 \text{kkr} \quad 0,15 \\
\text{Fungerar ej} & \quad 25\% \quad 600 \text{kkr} \quad 0,05 \\
\text{Summa:} & \quad 1,00
\end{align*}
\]

Figur 2.1 Exempel på händelseträd för brandutveckling i ett rum
Källa: Mattsson 1997

\[c \] står för ett specifikt scenario. \(c \) står för complete och innebär att alla scenarier är intressanta för att besvara frågan om vad risk är.
Första steget i att framställa en riskprofil är att konstruera ett händelseträd enligt figur 2.1. När väl detta är gjort och sätts delhändelserna i händelsetrådet lämpligen in i en tabell (se tabell 2.2) och sorteras efter stigande konsekvens. Genom att subtrahera sannolikheten mellan föregående delhändelse och de återstående erhålls ett underlag för att kunna framställa en riskprofil (komplementär fördelningsfunktion[^3]) som illustrerar sannolikheten för att utfallet skall bli större än det givna värdet[^4].

Tabell 2.2 Underlag för framtagande av riskprofil

<table>
<thead>
<tr>
<th>Delhändelse</th>
<th>Konsekvens</th>
<th>Sannolikhet</th>
<th>Subtraherad sannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0,6</td>
<td>1,0</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>0,2</td>
<td>0,4 (1-0,6)</td>
</tr>
<tr>
<td>3</td>
<td>350</td>
<td>0,15</td>
<td>0,2 (0,4-0,2)</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>0,05</td>
<td>0,05 (0,2-0,15)</td>
</tr>
</tbody>
</table>

Σ = 1

Figur 2.2 visar sannolikheten för att en skada (här uttryckt i kronor) skall vara större än ett visst värde. I Figur 2.3 åskådliggörs ett exempel där två riskprofiler, representerande ett system A och ett system B jämförs. Skillnaden mellan de två systemen kan exempelvis ligga i att de har olika typer av skyddssystem med innebörden att funktionssäkerheten skiljer sig åt. Profilen som representerar system B, längst till vänster i figuren, är det mest fördelaktiga (dominerande) ur risksynpunkt eftersom det ger minst skada för alla värden på sannolikhet.

[^3]: Det engelska uttrycket är *complementary cumulative distribution function*.
[^4]: Om båda axlarna i fig 2.2 logaritmeras och X-axeln representerar antal människoliv erhålls en s k Frequency/Number-kurva, F/N-kurva (se figur B1 a2 i bilaga 1) som beskriver sannolikheten att en olycka av viss storlek (=med ett visst antal dödsfall) skall inträffa.
Integrerad regional riskbedömning och riskhantering

2.2.2 Beteendeorienterande aspekter på definitionen av risk
Riskbegreppet som länge varit baserat på det tekniska synsättet har på senare tid fått stark kritik för att vara alltför snävt då det i mycket liten grad tar hänsyn till subjektiva åsikter och riskens kvalitativa egenskaper. Ovan har i korta drag berörts några olika samhällsvetenskapliga riskperspektiv (se tabell 2.1). I det följande behandlas dessa perspektiv som en enhet.

Vilka är då bristerna med det tekniska synsättet? Renn (1998) sammanfattar svaret i några punkter:
- Det tekniskt ’reduktionistiska’ angreppssättet utelämnar en mångfald av aspekter som folk i allmänhet förknippar med risk.
- Sampelet mellan mänskliga aktiviteter och konsekvenser är mer komplicerat och unikt än vad som ryms i det sannolikhetsbegrepp som används i de tekniska analyserna.

Figur 2.2 Exempel på riskprofil
Källa: Mattsson 1997

Fig 2.3 Exempel över två riskprofiler där en är dominerande (optimal).
Källa: Mattsson 1997

2.2.2 Beteendeorienterande aspekter på definitionen av risk
Riskbegreppet som länge varit baserat på det tekniska synsättet har på senare tid fått stark kritik för att vara alltför snävt då det i mycket liten grad tar hänsyn till subjektiva åsikter och riskens kvalitativa egenskaper. Ovan har i korta drag berörts några olika samhällsvetenskapliga riskperspektiv (se tabell 2.1). I det följande behandlas dessa perspektiv som en enhet.

Vilka är då bristerna med det tekniska synsättet? Renn (1998) sammanfattar svaret i några punkter:
- Det tekniskt ’reduktionistiska’ angreppssättet utelämnar en mångfald av aspekter som folk i allmänhet förknippar med risk.
- Sampelet mellan mänskliga aktiviteter och konsekvenser är mer komplicerat och unikt än vad som ryms i det sannolikhetsbegrepp som används i de tekniska analyserna.
• Den tekniska riskanalysen kan inte ses som en värdefri vetenskaplig aktivitet. Värderingar reflekteras i hur risker karakteriseras, mäts och tolkas.
• Den numeriska kombinationen av konsekvens och sannolikhet förutsätter likvärdig betydelse för de båda komponenterna. Detta förhållande har emellertid visat sig vara mer komplicerat i verkligheten då allmänheten i högre grad undviker risker med låg sannolikhet men med stora konsekvenser än risker med stor sannolikhet och måttlig konsekvens.
• Att generellt sammanställa data som berör stora populationer över lång tid utelämnar ofta viktiga individuella skillnader och preferenser.

• Ofrivillig utsatthet.
• Brist på personlig kontroll.
• Oåkta om sannolikheten eller konsekvensen av en olycka.
• Brist på erfarenhet av risken.
• Tidsfördröjda effekter av exponeringen.
• Genetiska effekter.
• Olyckor som sker sällan men når de inträffar så är effekten av katastrofal karaktär (Low Probability – High Consequence).
• Fördelar som inte är påtagliga.
• Fördelar som gynnar andra.
• Olyckor som förorsakas av mänskliga faktorn (jämfört med t ex natuurrelaterade).

5 Man har emellertid fokuserat på den subjektiva bedömningen av enskilda riskkällor och inte närmare belyst hur risken uppfattas i förhållande till andra sammanhang som livsmål etc.
Integrierad regional riskbedömning och riskhantering

6 Det kan konstateras att flera undersökningar av den här typen har genomförts och omfattar en hel forskningsgren (se The Royal Society 1992)
Det har också visat sig möjligt att urskilja några olika ”strategier” för hur gemene man skapar sin riskuppfattning (Cox 1991, Renn 1998):

- **Representativitet:** Unika händelser, som antingen upplevts personligen eller som associeras med egenskaper av en händelse, får större betydelse för riskuppfattningen i förhållande till objektiv information om sannolikheter när någon skall göra en förutsägelse om risken.

- **Minnet av risken:** Vilken beror av tiden som gått sedan en händelse inträffade och om man har blivit påmind om den (t ex hur den hanterats i medierna).

- **Anpassning och förankring:** Innebär att det slutliga värdet endast blir en justering av det preliminära värdet.

- **Riskaversion:** Innebär i korta drag att individer i allmänhet reagerar starkare mot olyckor av typen LP-HC (Low Probability – High Consequence) än tvärtom. En olycka med tio dödade betraktas som svårare än tio singelolyckor med dödlig utgång.

Då en helhetssyn på riskfrågor eftersträvas finns det ett tydligt behov av att vid bedömning av risker ta hänsyn både till de tekniska som de beteendeinriktade sidorna i riskbegreppet. Renn (1998) summerar i några punkter vad det samhälleliga riskperspektivet kan tillföra den traditionellt tekniska riskhanteringsprocessen:

- Identifiera och förklara allmänhetens intresse för olika riskkällor.
- Förklara sammanhanget kring risktagande i olika situationer.
- Identifiera kulturella betydelser och associationer som kan kopplas till speciella riskområden.
- Hjälpa till med att formulera förhållningssätt till risk i samband med att försök görs för att minimera risker, t ex det sociala perspektivets krav på jämnare fördelning av risker och sårbarhet.
- Utforma strategier för att inkorporera kulturella vården i beslutsprocessen.
- Utarbeta program för allmänt deltagande och gemensamt beslutsfattande.
- Gestalta program för utvärdering av riskhantering och organisatoriska strukturer för att identifiera, övertyga och kontrollera risker.

Samtidigt som det breda perspektivet är en styrka i det samhällsvetenskapliga synsättet finns det vissa problem förknippat med detta. De två större är:

2. Det finns inte någon gemensam nämnare för att mäta social eller kulturell acceptans.

Det första problemet kan i viss mån lösas genom att flera perspektiv beaktas och genom att kunskap införskaffas om de olika perspektivens för- och nackdelar. Det andra problemet kan i viss mån reduceras genom att en enhetlig diskurs utvecklas mellan de inblandade parterna.

2.3 Risktyper

- Naturmässiga – översvämningar, jordbävningar, stormar m m.
- Teknologiska – industrianläggningar, strukturer, transportsystem, konsumentprodukter, kemikalier etc.
- Sociala – överfall, krig, sabotage etc.
- Livsstilsrelaterade – droganvändning, rökning m m.

- Individuella - påverkan på en individ ur allmänheten.
- Yrkesmässiga - påverkan på en arbetare.
- Samhälleliga - övergripande påverkan på allmänheten.
- Egendomsmässiga och ekonomiska - affärsstämpliga störningar eller skada på fysisk objekt.
- Miljömässiga - påverkan på land, vatten, mark, flora etc.

Kolluru (1996) gör en indelning av olika risker med avseende på vilken metodik för riskbedömning som är nödvändig:

- Olycksrisker
- Hälsovård
- Ekologiska/miljömässiga risker
- Välfärd/goodwill-risker
- Finansiella risker

Olika myndigheter och andra organisationer gör egna indelningar. Boverket (Persson 1998) rekommenderar kommunerna att arbeta med:

- Naturrisken – markområden där geologiska och hydrologiska förhållanden kan ge upphov till skred, översvämningar, radonutsläpp etc.
- Industri och lager etc - anläggningar med omfattande hantering av eller produktion av kemiska ämnen och farligt gods.
- Hamnar, flygplatser, terminaler – d v s anläggningar där farligt gods hanteras/omlastas.
- Kommunikationer, transporter – transport av farligt gods.
- Risker under beredskap och krig – anläggningar som utgör potentiella mål för sabotage.

ÖCB m fl (1998) gör, i likhet med andra länder civilförsvaret, en bred indelning för att täcka in alla de funktioner som är väsentliga för att ett samhälle skall bestå och motstå svåra prövningar, d v s vara robust. ÖCB m fl har bl a upprättat en checklista för robusthetsanalys (se tabell 2.3). I denna görs en uppdelning på olika samhälls- och funktionsområden som är utsatta för olika typer av risker och hot ur ett samhälleligt robusthetsperspektiv.

Risken i samhället kan självfallet kategoriseras på flera andra sätt än de som redovisats här. Bredden och djupet av de olika indelningarna skiljer sig åt beroende på vem som upprättar dem och varför.
2.4 Det robusta samhället

Ett av de grundläggande målen för samhällsplaneringen är att skapa säkra och goda livsmiljöer. Allt större ansträngningar görs därför för att komma tillrätta med de risker för sammanbrott och försvagning som kan observeras i tabell 2.4 och istället göra samhället mindre sårbart. Sårbarhetskonceptet karakteriserar systemets brist på robusthet utifrån flera olika hot. Einarsson och Rausand (1998) karakteriserar sårbarhet i ett industriellt system som:

The properties of an industrial system; its premises, facilities, and production equipment, including its human resources, human organization and all its software, hardware, and net-
**work, that may weaken or limit its ability to endure threats and survive accidental events that originate both within and outside the system boundaries* (Einarsson och Rausand 1998: 536).

Sårbarheten i ett system berör alltså dess överlevnad. Motsatsen till det sårbara samhället är det robusta, m a o ett samhälle som har förmågan att stå emot, anpassa sig efter och överleva svåra påfrestningar. Frågan som därmed ter sig allt viktigare är hur samhället kan utformas för att bli mindre sårbart, eller mer motståndskraftigt, mot olika prövningar.

Tabell 2.4 Innebörden av sårbarhet
Källa: Bergström m fl 1998

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Sammanbrott</th>
<th>Försvagning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Människor</td>
<td>Död</td>
<td>Sjukdom, undernäring</td>
</tr>
<tr>
<td>Samhälle</td>
<td>Anarki</td>
<td>Fientlighet</td>
</tr>
<tr>
<td>Tekniska system</td>
<td>Ingen funktion</td>
<td>Bristfyllig funktion</td>
</tr>
<tr>
<td>Naturen</td>
<td>Ärtdöd/sterilitet</td>
<td>Störningar i ekosystem</td>
</tr>
</tbody>
</table>
Integrerad regional riskbedömning och riskhantering

ÖCB m fl (1998) definierar det robusta samhället som sammansatt av en teknisk, en social och en ekologisk (se figur 2.5) dimension. ÖCB menar att det är viktigt att anlägga ett helhetsperspektiv på dessa aspekter och att samhällsbygget måste utgå från ett hänsynstagande till var och en.

Social robusthet handlar om god samhällsorganisation goda relationer inom samhället. Gemensamma regelsystem, demokrati, välfungerande organisation av verksheter, service och boende är viktiga nyckelord.

Ekologisk robusthet innebär att naturresurser skall utnyttjas varsamt och att ekologiska kretslöpp inte bör rubbas. Hushållning med resurser och ett fungerande samspel mellan den byggda miljön och naturen är viktiga utgångspunkter.

Tekniskt kan samhället betraktas som robust då teknologin och infrastrukturen är mångsidig och av god kvalitet. Storskaliga system bör kombineras med mindre, lokala för att bygga upp en reservkapacitet och flexibilitet. Ekonomisk robusthet ingår på olika sätt i de tre dimensionerna.

2.5 Integrativa regionala riskaspekter

riskbedömning säger således inte mycket om vilka risker person A sammanlagt exponeras för i sitt bostadsområde eller vilka andra faror som hotar ekosystem B.

IRRASM (se avsnitt 4) tacklar problemet genom att inleda riskbedömningen med att göra en större (grov) rumslig avgränsning för att täcka in alla relevanta riskkällor och utsatta subjekt/objekt m t h ett specifikt syfte, t ex att undersöka risksituationen i en region. Vad som eftersträvas är en samlad bild av riskerna i rummet. En fråga som därvid uppkommer är naturligtvis hur rummet bör avgränsas.

Figur 2.6 åskådliggör schematiskt hur proceduren för en integrativ rumsbaserad riskanalys kan se ut. Den är integrativ såtillvida att den tar hänsyn till olika typer av olycksrisiker i ett påverkat område. Med begreppet integrativ kan emellertid avses betydligt mer än så. Visserligen eftersträvas en helhetssyn men denna kan uppstå på olika nivåer. Den totala bilden torde utgöras av att man utgår från hela samhället och dess olika subsystem (sociala, ekologiska, tekniska system, jmf det robusta samhället). En helhetsbild kan emellertid även eftersträvas för mindre system och för andra ändamål (t ex inkludera alla de faktorer som avgör riskerna från spridning av skadliga ämnen från en riskkälla). I den litteratur som explicit framhållit det integrativa rumsliga tillvägagångssättet att hantera risker på (bl a Gheorghe och Nicolet-
Integrierad regional riskbedömning och riskhantering

De ofrånkomliga elementen i en riskanalys utgörs av riskkällan och det utsatta objektet/subjektet. Riskerna mäts för det mesta mot ett enskilt sådant objekt/subjekt i taget, t ex ett ekologiskt system, mänsklig hälsa, säkerhet etc. En fråga är naturligtvis i vilken omfattning det är rimligt, och över huvud taget möjligt, att i en analys samtidigt se till flera särbarba entiteter av olika slag. Att bredda analysernas omfattning stöds bl a av den nya miljöbalansen som integrerar säkerhets- och miljöaspekter. Ett problem är dock att riskerna baseras på olika effekter. Hur skall det riskmått se ut som är relevant för olika typer av utsatta objekt? Är det rimligt och meningsfullt att sträva mot ett sådant mått?

Informationsmängden i en rumslig och integrativ analys blir oundvikligen mycket stor och mångfacetterad. Att integrera dessa faktamängder med varandra ger ytterligare kunskaper och information om risksituationen i rummet. Riskmått kan t ex jämföras med sociala, ekonomiska och demografiska faktorer och peka på intressanta korrelationer. Detta kräver goda statistiska kunskaper och stor aktksamhet eftersom det är lätt att felbehandla, och vilseleda med, statistik

Fedra (1998) pekar på behovet av att använda olika verktyg för att kunna hantera de stora datamängder som uppstår vid en riskbedömning. Det handlar dels om att integrera verktyg med
olika metoder men också att samordna verktygen med varandra. Samverkan mellan flera sådana verktyg, t ex dynamiska simuleringsmodeller tillsammans med GIS-system och fjärdatalyser, kan bygga upp mycket kraftiga och betydelsefulla system för riskbedömning och riskhantering i (real)tids och rum. Kommunikationsteknologins snabba utveckling flyttar ständigt gränserna framåt för vad som är möjligt att utföra.

En grundläggande integrativ ansats i rapporten görs i och med att fokus är på det robusta samhället (se avsnitt 2.4). I det robusta samhället betonas vikten av att olika dimensioner av samhället är i god funktion och att kopplingarna mellan dessa är starka och friktionsfria. Mer konkret innebär detta att hänsyn tas till de aspekter som redovisas i tabell 2.3. I rapporten behandlas även integrativa analysmetoder som grundar sig på en systemsyn. Ett sådant exempel är sårbarhetsanalysen (se avsnitt 5).

En sammanfattning kan göras så här långt av vad som kan anses karakterisera begreppet integrativ i rapporten.

- Att anlägga ett holistiskt perspektiv och/eller systemsyn på samhället och beakta alla riskelement.
- Integrera många riskkällor, såväl interna som externa och eventuellt av olika sort.
- Knyta ihop tid och rum (for t ex distansövervakning i realtids).
- Uppmärksamma kopplingseffekter (synergie- och dominoeffekter, d v s en systemsyn).
- Se till påverkan på flera sårbara subjekt/objekt.
- Beakta olika aktörer och intressenter samt deras varierande perspektiv och uppfattningar.
- Utröna samverkansmöjligheter över myndighetsgränser.
- Integrera olika informationstyper (attribut av olika slag som sociala och ekonomiska faktorer).
- Integrera olika tekniska verktyg såväl med varandra som med olika metoder och modeller.

8 Vi vill här påpeka att vi inte gör anspråk på att ha gjort en uttömmande definition av vad som kan avses med begreppet integrativt i sammanhanget utan vill mer visa på några exempel.
Del II

Metoder och verktyg för riskbedömning och riskhantering
3 Metoder för teknisk, objektbetonad riskbedömning och riskhantering

3.1 Definitioner

Proceduren i figur 3.1 är den generella. I verkligheten ser stegen lite annorlunda ut beroende på om man t ex fokuserar på olycksrisker eller hälso- och miljörisker. Figur 3.2 och figur 3.3 illustrerar tillsammans med tabell 3.1 skillnaderna.

Integrerad regional riskbedömning och riskhantering

Det är tydligt att proceduren för att bedöma miljö- och hälsorisker å ena sidan och olycksrisken å den andra i stora drag liknar varandra. Båda börjar med att identifiera system och risker och slutar med att fråga sig om den risk som värderats är acceptabel eller om den skall värderas. Samtidigt är det tydligt att det existerar flera skillnader i utförandet däremellan.

Begreppen hälsorisker, miljörisker och säkerhetsrisker (olycksrisker) kan te sig något oklara, speciellt förhållandet mellan säkerhetsrisker och hälsorisker. En säkerhetsrisk kan, som vi ser nedan, påverka hälsan negativt. Vad som primärt skiljer dessa åt (med avseende på påverkan på människa) är tidsfaktorn. Emedan säkerhetsrisken harror från en händelse med ögonblickliga konsekvenser kan hälsoriksen betraktas som ett utslag av en längre process.

Figur 3.2 Hantering av olycksrisker

Figur 3.3 Hantering av miljö- och hälsorisker från utsläpp vid normal drift
3.2 Riskbedömning

De två första stegen i processen riskhantering, riskanalys och riskevaluering, brukar tillsammans benämnas riskbedömning (se figur 3.1). Riskbedömning kan ses som en process där målet är att uppskatta sannolikheten för att en händelse skall inträffa, konsekvenserna av de oönskade effekterna samt att värdera skadehändelsen. Riskbedömning kan göras inom flera områden. Nedan följer en översikt över några av de vanligaste kategorierna och en kort beskrivning av vad som karakteriserar dem (Kolluru 1996):

4. **Allmän välfärd/goodwill-risker:** Avser allmänhetens uppfattning om en organisation eller dess produkter, omsorgen gäller bl a estetik, egendomsvärden och begränsningar i resursanvändning. Centralt är allmänna uppfattningar och värderingar. Riskmätten kan tillhöra så vitt skilda kategorier som restriktioner i resursanvändning, luktbesvär, utsiktsförvärvar och estetik och egendomsvärden.

5. **Finansiella risker:** Berör kort- och långsiktiga risker för egendomsskador eller avkastningsförluster, avkastning på miljö-, hälsos- och säkerhetsmässiga investeringar. I centrum står operabilitet och finansiell livsduglighet. Riskmätten baseras på ansvarsexponering och avkastning.

I tabell 3.1 görs en översikt över tillvägagångssättet för riskbedömning av säkerhet, hälsa och ekologi. Det första steget är gemensamt och går, efter att systemet avgränsats, ut på att identifiera riskkällorna och att definiera problemet.

För att bedöma riskerna mot hälsa och miljö fortsätter processen med bedömning av exponeeringen samt en undersökning av dos-respons relationen för att fastställa förhållandet mellan omfattningen av en riskkällas exponering och sannolikheten för respons i en exponerad population. I steget riskkaraktiserings integreras bedömningen av exponering och dos-responsförhållandet till en kvantitativ uppskattning (se även bilaga 1 B).

Bedömningen av säkerhetsriskerna fortsätter, efter att riskkällan identifierats, med att sannolikheten för att händelser skall inträffa uppskattas (frekvensanalys) samt sannolikheten för att skadliga effekter skall äga rum och av vilken sort och styrka dessa effekter är (s k kon-
sekvensanalys). I ett sista steg utvärderas risken genom att sannolikhet och konsekvens vägs samman. Vi återkommer till metodiken i avsnitt 3.3-3.5 (se även bilaga 1 A).

Tabell 3.1 De större stegen i riskbedömningsprocedurerna för några vanliga risktyper
Källa: Huvudsakligen Kolluru (1996)

<table>
<thead>
<tr>
<th>SÄKERHET</th>
<th>MÄNSKLIK HÄLSA</th>
<th>EKOLOGI/MILJÖ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identifikation av riskkällor
Material, utrustning, procedurer, t.ex inventarier, storlek och läge, brandfarliga, reaktiva eller akut giftiga material och utlösende händelser t.ex utrustning som slutar fungera, mänskliga fel, fel som inträffar under lagring etc.</td>
<td>1. Dataanalys/identifikation av riskkällor
Kvantiteter och koncentrationer av kemiska, fysiska och biologiska agenter i miljömedier. Identifiering av farliga kemikalier.</td>
<td>1. Problemformulering (prioritering av riskkällor)
Permanent och tillfällig flora och fauna, särskilt utsatta och hotade arter, undersökningar av mark och vatten, föroreningar och stressfaktorer av betydelse för det studerade området.</td>
</tr>
<tr>
<td>2. Sannolikhet/frekvens uppskattning av orsaker
Sannolikhet för initierande/fortskrivande händelser och olyckor av interna och externa orsaker.</td>
<td>2. Exponeringsbedömning
Spridningsvägar, potentiella receptorer inklusive känsliga subgrupper, exponeringsförhållanden och tidsaspekter.</td>
<td>2. Exponeringsbedömning
Spridningsvägar, naturlig vistelseplats för växter eller djur eller receptorpopulation, särskilt skyddade arter, punktvisa exponeringskoncentrationer.</td>
</tr>
<tr>
<td>4. Riskvärdering
Integration av sannolikhet och konsekvenser ger kvantitativa uttryck för säkerhetsrisken, teknisk säkerhetsrevision.</td>
<td>5. Riskkaraktärisering
Integration av toxicitet och exponeringsdata till kvalitativa eller kvantitativa uttryck för hälsofaktorer, osäkerhetsanalys.</td>
<td>4. Riskkaraktärisering
Integration av fältundersökningar, giftighet och exponeringsdata för att karakterisera signifikanta ekologiska risker, kausala förhållanden och osäkerhet.</td>
</tr>
</tbody>
</table>

TYPISKA ÄNDPUNKTER
- Dödsfall, skador, ekonomiska förluster.
- Individuella och befolkningssläktiga risker för cancer och andra sjukdomar.
- Ekosystem eller habitatpåverkan, t.ex artmängdfald och global inverkan.

TYPISKA TILLÄMPNINGAR
- Kemisk och petrokemisk processsäkerhet, transport av farligt gods, off-shore, kärnkraft, flygindustri, bärande konstruktioner.
- Farliga avfallstioner, luft, vatten, mat, läkemedel och kosmetika. Tillståndspåverkan av verksamhet eller anläggning.
- Utgående om miljömässig påverkan, bedömning av naturresursknack, lägesbestämning av anläggning, registrering av bekämpningsmedel.
Metoder och verktyg för riskbedömning och riskhantering

3.3 Teknisk riskanalys - en internationell standard

1. Definition av omfattning

I det första steget skall: a) orsakerna till analysen beskrivas, b) det system som skall analyseras definieras och avgränsas liksom; c) de tekniska, miljömässiga organisatoriska och övriga aspekter som är relevanta för problemet; d) antaganden och begränsningar som styr analysen skall fastställas och; e) de beslut som behöver tas identifieras.

2. Identifikation av riskkällor och genomförande av en initial konsekvensvärdering

I det andra steget identifieras riskkällorna och det sätt på vilket de kan utgöra hot. En initial konsekvensvärdering görs av den signifikans de olika riskkällorna har. Syftet är att besluta om a) åtgärder skall utföras på den här nivån för att eliminera eller reducera faran; b) om analysen skall avslutas p g a att riskkällorna är insignifikanta eller; c) om man skall fortsätta med nästa steg.

De vanligaste metoderna för riskidentifikation kan delas in i tre områden (Nicolet-Monnier 1996):

- Komparativa metoder (process/system-checklistor, säkerhetsgranskning/översyn, indexmetoder för relativ rangordning and preliminära analyser av riskkällor).
- Fundamentala metoder ("Hazard and operability studies", "What if?–analyser", "Failure mode effect and criticality analysis" och "Goal oriented failure analysis").
- Logiska diagram metoder (felträdsanalys, händelseträd, analys av mänsklig tillförlitlighet, and "system success trees").

3. Riskuppskattning

I en riskuppskattning bedöms de initierande händelserna, följden av dem, skadereducerande inslag och hur frekvent de skadliga konsekvenserna inträffar. Syftet är att kvantifiera riskuttrycket d v s Kaplans (och Garrick) uttryck R = {<S, L, X>≤R}c så som det beskrevs i avsnitt 2.2.1. Uppskattningen görs i tre steg.

10 För att senare eventuellt besluta om åtgärder
11 Den engelska benämningen är Hazard analysis. En annan svensk benämning är faroanalys
12 Begreppet har myntats tidigare tillsammans med B.J. Garrick
I det första steget görs en frekvensanalys. Syftet med frekvensanalysen är att bestämma hur ofta de önskade effekterna som tidigare identifierats inträffar. Tre grundläggande tillvägagångssätt föreligger:

- Se till historiska data.
- Förutse frekvensen genom att använda tekniker som feltrådsanalys och händelseträd.
- Förlita sig på expertbedömningar vilket innebär att subjektiva element infogas i bedömningen.

I det andra steget analyseras konsekvenserna på människor, egendom, etc mer i detalj. Konsekvensanalysen baseras på de önskade händelser som bedömts som intressanta och syftar till att beskriva de effekter som kan härråda till dessa företeelser. Det är angeläget att överväga såväl direkta konsekvenser som sådana som kan uppstå på längre sikt. Slutligen bör man fundera på sekundära konsekvenser. Analysen kan göras kvantitativt (genom beräkningar) eller kvalitativt (genom subjektiva bedömningar). Ändamålet kan vara att t ex uppskatta det antal människor som är lokalisera i olika miljöer, på olika avstånd från riskkällan och som dödas, skadas eller på annat sätt berörs negativt.

I riskuppskattningens sista steg undersöks sannolikheten för att riskkällan skall orsaka det önskade händelseförloppet - scenariot. Risken kan därefter, som tidigare redogjorts för, uttryckas på flera sätt. Med utgångspunkt ur Kaplan (& Garricks) riskdefinition (trippeluttrycket ovan) är det t ex möjligt att redovisa risken som en riskprofil (se avsnitt 2.2.1).

Viktigt i det här steget är att fastslå huruvida riskuppskattningen reflekterar hela risken eller endast en del av den. Önskheten är ofta stor i beräkningarna. En osäkerhetsanalys kan användas för att bestämma variationen eller graden av noggrannhet i resultatet från modellerna.

4. Verifikation
En formell utvärdering bör utföras av någon utanför projektet för att bekräfta analysens integritet. Man bör kontrollera att avgränsningen som gjorts är den rätta h m t målet och gå igenom alla kritiska antaganden för att försäkra sig om att de är trovärdiga. Vidare bör bekräftas att analysen använder de för ändamålet rätta metoderna, modellerna och data och undersöker om utredningen går att utföra av andra än de som ursprungligen gjort den.

5. Dokumentation
Riskanalysprocessen bör dokumenteras. Styrkor och svagheter med olika riskmått skall förklaras och osäkerheterna kring riskuppskattningarna uttryckas på ett sätt så att den tilltänkte läsaren förstår vad som menas.

6. Uppdatering av analysen
Om riskhanteringsprocessen är kontinuerligt pågående bör analysen utformas på ett sådant sätt att den kan uppdateras genom systemets, händelsens eller aktivitetens livscykel. Vilka metoder man beslutar sig för att använda beror t ex på vilken fas systemet befinner sig i, målet med studien, hur allvarlig risksituationen är etc.

13 En genomgång av problemet med riskanalysens praktiska användning skedde i ”Co-operative Nordic risk Research” (Magnusson m fl 1999). Rapporten som utgör ett förslag till samordnad nordisk riskforskning, analyserar svårigheterna sett från industrins, myndigheternas och allmänhetens synvinkel.
Metoder och verktyg för riskbedömning och riskhantering

3.4 Praktiska tillvägagångssätt vid utförande av en teknisk riskanalys

3.4.1 Kvalitativa metoder
Kvalitativa metoder används främst för att identifiera risker. De är alltså mest tillämpliga i den första delen av riskanalysen (se avsnitt 3.3). De kvalitativa metoderna är anpassade för olika verksamhetsstyper och syftet är främst att ge beskrivningar av skeenden i tillämpliga fall. För varje typ av risker finns emellertid specifika definitioner, strukturer, beräkningsmodeller och sätt att uttrycka slutresultatet i tillämpliga fall. Det är därför inte möjligt att ge någon strukturell och lättöverskådlig modell för hur alla riskanalyser utföras. Ett sätt att dela in riskanalyser är dock efter grad av kvantifierbarhet. Grovt sett kan analyserna kategoriseras som kvalitativa, semi-kvantitativa eller kvantitativa (se figur 4.1). I avsnittet nedan görs en översikt av de olika metoderna med hänsyn till om de är kvalitativa, semi-kvantitativa eller renodlat kvantitativa.

HazOp

What if?
Checklistor
Riskmatrizer

Index
Konsevens-analyser
QRA/PRA
Osäkerhets-analyser

<table>
<thead>
<tr>
<th>Kvalitativa metoder</th>
<th>Semi-kvantitativa metoder</th>
<th>Kvantitativa metoder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HazOp</td>
<td>Index</td>
<td>QRA/PRA</td>
</tr>
<tr>
<td>What if?</td>
<td>Konsevens-analyser</td>
<td>Osäkerhets-analyser</td>
</tr>
<tr>
<td>Checklistor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riskmatrizer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur 3.4 Spektrat av olika riskanalysmetoder med hänsyn till graden av kvantitativa och kvalitativa inslag.
Källa: Olsson 1999

"What if?"-analyser identifierar riskkällor genom att värdera konsekvenserna av oplanerade händelser i det studerade systemet. Man försöker analysera tänkbara avvikelse från den planerade funktionen och driften i systemet genom att ställa "vad händer om...?"-frågor. Till sin hjälp tar man erfarenhetsbaserad kunskap. Metoden tillämpas vanligtvis för att värdera riskerna i samband med planerade förändringar av en process. Resultaten är kvalitativa och redovi-
Integrerad regional riskbedömning och riskhantering

sas i tabeller över möjliga skadeförlopp och följdverkningar tillsammans med förslag på riskreducerande åtgärder.

Checklistor bygger på erfarenhet och används för att identifiera kända typer av riskkällor och som kontrollinstrument för att se till så att vedertagna standardförhållanden tillämpas. Medan de detaljerade checklistorna tenderar att fokusera på processen och den specifika anläggningen ser de mer allmänna listorna till egenskaper hos de ämnena som hanteras och yttre störningar.

Grovanalysmetoder används för att identifiera riskkällor i tekniska system utan att hänsyn tas till detaljerna. Syftet är att skaffa sig en grov uppfattning om vilka system som kan medföra allvarligare risker. Där stora risker indikeras kan det ofta vara lämpligt att komplettera analysen med en mer detaljerad arbetsmetodik. Grovanalysen används ofta i ett tidigt skede i plane-ringsarbetet och kan användas som en första analys av riskkällorna i befintliga system. Genom att låta personer med erfarenhet av de föreliggande förhållanden intuitivt gradera sannolikhet och konsekvens på en skala och sammanställa uppskattningarna erhålls en erfarenhetsbaserad värdering av riskerna, t ex i form av en riskmatris.

Riskmatriser har ett stort användningsområde och kan vara av kvalitativ eller kvantitativ art (se fig 2.5). Ett exempel på riskmatriser med ordinala skalar är Zürich Hazard Analysis, ZHA. Olika typer av händelser inventeras och sätts sedan in i en matris där ena axeln visar tänkbara frekvensen av händelsen (ofta, aldrig etc) och den andra axeln visar konsekvensernas omfattning (försumbar, katastrofal etc). Speciellt för ZHA är inslaget av *fuzzy logic*, vilket gör det möjligt att göra mjuka övergångar mellan strikta klassificeringar och ta hänsyn till olika mått. På så vis går det att inkludera alla typer av riskkällor i en bedömning.

3.4.2 Semi-kvantitativa metoder

De semi-kvantitativa metoderna är mer detaljerade i sin uppbryggad och innehåller till viss del mätt på konsekvens och sannolikheten för att en oönskad händelse skall inträffa. Mätten behöver inte vara exakta utan kan be-teckna storleksordningar för att kunna rangordna och jämföra olika alternativ förenade med olika risker.

Till de semi-kvantitativa metoderna kan bl a räknas riskmatriser med mer kardin-nala mätt på axlarna än de kvalitativa riskmatriserna (se figur 3.5). Ett annat tillvägagångssätt för att preferensrang-ordna riskkällor bygger på framställning av ett riskindex. För att t ex rangordna och jämföra olika riskreducerande al-ternativ eller för att jämföra olika systemutformningar med hjälp av ett index används ofta s k multiattributmetoder eller MADM-metoder (se kapitel 6 och 7).

Figur 3.5 Exempel på en semi-kvantitativ riskmatris

Källa: Räddningsverket 1989
3.4.3 Kvantitativa metoder
De kvantitativa riskberäkningarna varierar i utformning beroende på om uppskattningen avser olycksrisker (akut och olycksartad exponering) eller exponering för farliga ämnen härmmande från normala processer eller rutinartad drift (se avsnitt 3.5). Gemensamt för alla är emellertid att kvantitativa riskberäkningar baseras på oundvikliga osäkerheter i bl a beräkningsmodeller och indata. Dessa osäkerheter forplanta genom beräkningarna och ger en motsvarande osäkerhet i slutresultatet. Vid en deterministisk riskberäkning väljs representativa värden, t ex 80% eller 95% fraktal v, som ingångsvärde och slutresultatet blir en punktuppskattning av skadans storlek som förväntas vara konservativ, d v s ligga på säkra sidan. Vid en probabilistisk riskberäkning forplanta den fullständiga fördelningen av osäkerheter genom systemet och slutresultatet blir en fördelningsfunktion över skadans storlek. Det existerar ett antal analytiska och numeriska metoder för att forplanta osäkerheter genom en beräkningsmodell och litteraturen på området är omfattande. Beskrivs exempelvis osäkerheten i en parameter genom en diskretiserad fördelning kan beräkningen struktureras som ett händelseträd och slutresultatet redovisas som en diskret fördelning i form av en riskprofil (se avsnitt 2.2.1). Osäkerhetsanalysen berörs något i avsnitt 3.6.

3.5 Olycksrisker – övriga typer av risker
Om vi betraktar miljö- och hälsorisker till följd av exponering för kemikalier eller andra farliga ämnen som ursprung i normal drift av en verksamhet så undersöker man situationen där sannolikheten för exponering = 1. Beträffande olycksrisker har vi komplikationen att beräkningar måste baseras på en sannolikhet att riskkällan överhuvudtaget skall aktiveras. Sannolikheten för olycksartat utsläpp av viss typ från en processanläggning kan t ex vara i storleksordningen 10-4 – 10-6 / år och tillförlitligheten i slutresultatet är helt beroende av tillförlitligheten i denna uppskattning av sannolikheten. En konsekvens är att beräkningarna får en annan struktur. Oftast kan beräkningsgången illustreras av ett händelseträd och slutredovisas som en riskprofil.

Osäkerheter vid olycksrisker påverkar beräkningarna på flera fundamentala sätt. Förutom osäkerheter i modeller och indata tillkommer osäkerheter i sannolikheter att den initiala händelsen skall äga rum. I bilaga 1 A och B redovisas närmare för tillvägagångssättet för beräkning av olycksrisker och bedömning av hälsos- och miljörisker och där utsläppet ägt rum under normala driftsförhållanden.

3.6 Något om osäkerhetsanalys – kvalitetssäkring av riskanalys
Det centrala och allt överskuggande problemet vid användning av semikvantitativa riskanalyser gäller osäkerhetsanalyser; Identifiering av olika typer/kategorier av osäkerhet; kvantifiering av osäkerheterna; behandlingen av osäkerhet; den kvantitativa beräkningsprocesserna; presentationen av resultatet av osäkerhetsanalysen; inverkan på den fortsatta beslutsprocessen, ex vis val av acceptabel risk. Litteraturen på området är mycket omfattande och omöjlig att
Integrerad regional riskbedömning och riskhantering

Sammanfattas i en översikt av denna typ. Vi kan här presentera endast några inledande exempel på arbeten. ”Bibeln” på området är skriven av Morgan och Henrion (1990). I en publikation från 1995 beskriver Magnusson m fl för ett specifikt riskbedömningsproblem (utrymning vid brand) användning av ett antal generella metoder för simulering och analys av osäkerheter:

1. Säkerhetsindex β metoden byggd på en lineariserad analytisk beskrivning av ett gränstillstånd och säkerhetsnivån beräknad med utgångspunkt från ett antal ingående statistiska parametrar beskrivs av sina första två moment (medelvärde och standardavvikelse).
2. Enkel Monte Carlo simulering av standardtyp.
3. Tvåfas Monte Carlo simulering byggd på separation av stokastisk osäkerhet och kunskapsosäkerhet.
4. Evaluering av handelsetrad via standardiserad, ”deterministisk” PRA.
5. Händelsetradsevaluering via Monte Carlo simulering

3.7 Riskevaluering

Davidsson m fl (1997) identifierar fyra principer som kan användas som utgångspunkter vid värdering av risker:

- **Rimlighetsprincipen** innebär att om de risker som en verksamhet medför kan undvikas med rimliga medel bör så ske.
- **Proportionalitetsprincipen** hävdar att riskerna med en verksamhet inte bör vara oproportionerligt stora i förhållande till fördelarna med den.
- **Fördelningsprincipen** säger att riskerna skall vara skälligt fördelade i samhället i förhållande till de fördelar som verksamheten medför.
- **Principen om undvikande av katastrofer** innebär att det anses bättre att en eventuell risk realiseras genom en olycka med begränsade konsekvenser än i en katastrof.

Även följande tre stolpar, som delvis sammanfaller med punkterna ovan, är viktiga att beakta (Davidsson m fl 1997):

- Samhällets strävan efter en kontinuerlig förbättring av säkerhetsnivån skall understödjas.
- Kriterier skall vara praktiskt tillämpbara med hänsyn till vedertagna riskanalysmetoder.
- Kriterier skall bidra till en kostnadseffektiv användning av resurser för riskreducerande åtgärder.

14 Vi gör här endast anspråk på att ge en översikt över några av de principer som förekommer. Det är viktigt att poängtera att det finns flera andra, bl a försiktighetsprincipen som säger att misstanken om skadlig påverkan är tillräcklig för att avstå från en viss verksamhet.
Metoder och verktyg för riskbedömning och riskhantering

3.8 Riskreducerande/preventiva åtgärder

IAEA m fl (1998) identifierar tre principer enligt vilka risker åtgärdas:

- **Preventiva förfaringssätt** - vilket kan innebära att risken förhindras uppstå vid källan genom att alternativa tekniker/processer används istället för de pågående, att särskilda transportvägar upprättas eller att de medel som står till bjuds inom de fysiska planprinciperna används.

- **Skadereducerande åtgärder** - för att redan vid källan reducera sannolikhet och konsekvens vid en inträffad olycka. Även här kan den fysiska planeringsprocessen vara ett användbart instrument.

- **Akut beredskap** - välutbildad akutservice kan vid akuta olyckor reducera antalet olycksdrabbade.

Davidsson m fl (1997) identifierar fyra huvudprioriter enligt vilka risker åtgärdas i Sverige och som delvis sammanfaller med IAEA’s indelning:

- Inbyggd säkerhet vilket innebär att potentiella riskkällor elimineras.
- Olycksförebyggande åtgärder som reducerar sannolikheten för att händelsen skall inträffa.
- Preventiva skadebegränsande åtgärder som reducerar konsekvenserna av en olycka innan den inträffat.
- Akuta skadebegränsande åtgärder vilka reducera konsekvenserna av en olycka när den inträffat.

Tendensen är att de preventiva åtgärderna används i allt större omfattning i förhållande till ”end of pipe control” för att reducera mänskliga och miljömässiga risker, d v s ett proaktivt förhållningssätt föredras. Exempel på sådana åtgärder är substitution av råvaror, förändringar i produktionsprocessen etc. Många företag har även börjat integrera de riskreducerande åtgärderna i sitt långsiktiga strategiska tänkande. På så vis kommer riskreduktionen in i produktutformningen, marknadsföringen och bokföringen såväl som produktionssidan.

Utformningen av de riskreducerande åtgärderna är till stor del också beroende av de nationella och internationella regelsystem och politiska strategier som finns i de olika länderna. Samhällets värderingar och det demokratiska systemet avgör vilka avvägningar som är de ”riotta”
Integrerad regional riskbedömning och riskhantering

Kolluru (1996), bland många andra, identifierar några sociala principer som styr beslutsfattandet och beskriver samtidigt vilka problem de kan föra med sig:

- **Skarpa gränser** med vilket menas att den acceptabla risken uttrycks som ett numeriskt värde. Om det aktuella riskvärdet överskrider det acceptabla vidtas åtgärder. Metoden har fått kritik för att den ignorerar många viktiga sociala och vetenskapliga faktorer.
- **Att ta itu med de största riskerna först** kan te sig problematisk då det långt ifrån är säkert att dessa risker kan åtgärdas på ett enkelt sätt. Kolluru nämner som exempel att folk i allmänhet inte är benägna att sluta köra bil för att minska utsläppen av kolväten m m. Somliga menar därför att inriktningen istället borde vara att prioritera de största möjligheterna för riskreduktion.
- **Cost-benefit analysen** blir allt populärare samtidigt som röster hörs för att den i för liten grad tar hänsyn till att alla faktorer inte är så lätt att kvantifiera.
- **Största möjliga nytta för det största antalet.**
- **Miljömässig jämlikhet** är ett försök att se till att vissa samhällsmedborgare inte bör en oproportionerligt stor börda av de miljömässiga riskerna. Denna princip löper emellertid ofta risken för att komma i konflikt med principen att göra största möjliga nytta för flertalet.

Det finns m a o inga enkla lösningar för att reducera risker i samhället. Situationerna ter sig istället oftast konfliktfyllda då flera intressen står emot varandra. I avsnitt 9.3 och 11.3 redovisar metoder för hur olika åsikter kan samordnas till en gemensam strategi och forma beslut som en majoritet kan ställa sig bakom. I avsnittet nedan redogör vi för hur IRRASM har vuxit fram som ett svar på behovet av bredare riskbedömningsmetoder och vad uttrycket egentligen representerar.
4 IRRASM – en rumslig integrativ ansats

4.1 Bakgrund, historik

Myndigheter i olika länder insåg snart behovet av en samlad risksyn. Riskbedömningar vid transport av farligt gods blev en föregångare för en mer integrativ ansats, spridningsmodeller anpassade för utsläpp från fasta anläggningar en annan. En pådrivande kraft utgjordes av olika internationella organisationer som IAEA, FN, WHO men också myndigheterna i tätbefolkade industriländer som Schweiz och Holland.

En orsak till att man fastnade för det regionala perspektivet var att man på den här nivån ansåg sig kunna identifiera flera intressekonflikter. I ett regionalt perspektiv eftersträvas å ena sidan ekonomisk och social utveckling, industrialisering och utbyggnad av infrastrukturen. Å andra sidan vill man försäkra sig om att mänsklig hälsa och de ekologiska systemen inte äventyras. Särskilt tre punkter ansågs angelägna att beakta vid beslutsfattande som får regionala konsekvenser:

- Behovet av att alloka resurser optimalt i hanteringsprocessen. M a o hur kan man med minsta möjliga medel åstadkomma största möjliga nytta för flertalet?
- Betydelsen av att alla riskelement omfattas.
- Vikten av att integrera alla element som är tillgängliga i hanteringsstrategin: d v s tekniska, juridiska, sociala, ekonomiska och lägesmässiga aspekter.

Ett resultat av programmet blev en uppsättning guidelines med syfte att tillhandahålla praktisk vägledning för genomförande av integrerad riskbedömning avseende hälsa och miljö och för att formulera och implementera strategier för att hantera riskerna i en region.

Integrativ riskbedömning baseras på att alla hälso- och miljömässiga risker inom ett område systematiskt identifieras, analyseras och bedöms på ett sådant sätt att sociala och ekonomiska aspekter vägs in. Integrativ hantering bygger på att alla möjligheter att hantera risker: preven-
Integrerad regional riskbedömning och riskhantering

tiva, skadereducerande, lägesmässiga, skyddande, förebyggande och institutionella utforskas så att resurserna utnyttjas mest effektivt (IAEA 1998).

För att en integrerad riskanalys skall leva upp till sitt namn bör den omfatta alla risker i en given area. Detta kan emellertid visa sig mycket svårt varför det ofta blir nödvändigt att göra vissa avgränsningar. IAEA’s guidelines behandlar främst risker som härstammar från emissioner men strategin torde kunna överföras till att omfatta flera andra risktyper.

IAEA m fl (1998) anser att ett viktigt mål i processen är att beslutssattandet dokumenteras väl och är transparent så att allmänheten får insikt i vilka risker de är utsatta för och hur dessa risker har bedömts. En sådan inblick, anser man, ökar möjligheterna för en konstruktiv dialog mellan allmänheten och myndigheterna. Man formulerade därför, som en del av handledningen, ett arbetsschema i fyra steg enligt nedan för en integrativ riskprocess:

2. Utför hälso- och miljömässiga riskanalysstudier. Detta innebär kvantifierad riskanalys för större olyckor, analys av kontinuerliga utsläpp och kvantifiering av miljömässig påverkan från utsläpp i olika medier, analys av farligt avfall samt analyser av transportrelaterade risker.
3. Upprätta därefter infrastrukturella och organisatoriska säkerhetsanalyser. Häri inkluderas analys och värdering av akuta planeringsåtgärder, inräknat förebyggande skyddsåtgärder såväl på anläggningen som utanför; övervakning av infrastruktur i området och översyn och analys av institutionell och regelmässig försörjning.

1. Formulera mål, upprätta en projektplan och identifiera de resurser som behövs.
2. Se till så att alla relevanta industriella organisationer och myndigheter inbegrips i strukturen.
4. Genomförandekommittén skall formulera projektförslag för en detaljerad arbetsplan och etablera arbetsgrupper för att utföra olika analyser inom projektet.
5. Genomförandekommittén skall så småningom också granska arbetsgruppennas slutliga resultat och förbereda en skrivelse med slutsatser och rekommendationer.
6. De deltagande organisationerna skall erhålla rapporterna och diskutera resultatet
7. Ge rekommendationer om eventuella förändringar i policy som skall genomföras samt förslag på vilka av de föreslagna åtgärderna som skall utföras.

De grunder på vilka ett område avgränsas i en studie varierar från fall till fall. IAEA ger några råd om hur avgränsningar bör göras utifrån kunskaper om spridning av föroreningar i olika medier:
- Området bör väljas för sina fysiska och industriella/ekonomiska karaktäristika och i mindre grad utifrån administrativa och nationella gränser.
- Strikta gränser bör inte dras förrän den inledande analysen av farorna färdigställts.
- Några riskkällor har en potential att påverka området utanför det avgränsade. I de fall där så är behövligt bör dessa uppmärksamas i analysen.
- Samhällsaspekter måste också uppmärksamas.

Inom det avgränsade området skall alla riskkällor föröka identifieras. Riskkällor kan med avseende på emissioner, vilket tidigare påpekats, delas in i två huvudkategorier: 1) De med ett olycksmässigt förlopp och; 2) De som kan inträffa under normal operativ verksamhet. Effekterna kan därefter delas in i underkategorier så som akuta olycksfall, långsiktiga hälsoeffekter, egendomsskador och olika biofysiska skador som kan uppstå via olika medier.

De grundläggande principerna för inledande identifiering av riskkällor och prioritering av de aktiviteter som skall undersökjas djupare består i:

IAEA m fl (1998) presenterar vidare några skilda förfaringsätt att utföra analyser beroende på vilka riskkällor som står i fokus. De riskkällor som behandlas är kontinuerliga utsläpp från fasta anläggningar, olycksmässiga utsläpp från fasta anläggningar, risker med transport av farligt gods och farligt avfall. Hur omfattande den integrativa ansatsen är jämfört med traditionella analyser varierar. Riskanalysers som fokuserar på olycksmässiga utsläpp från fasta anläggningar har redogjorts för i avsnitt 3.3. Risker som härstammar från kontinuerliga emis-
sioner riktar sig främst mot hälsa och ekologiska system vilket översiktligt redovisats i avsnitt 4.3 och mer i detalj i bilaga 1 B. Risker med transport av farligt gods är en föregångare för integrativ rumslig riskbedömning och behandlas i avsnitt 11.2.2. Riskanalys av farligt avfall tenderar att bli alltmer angeläget i samhället då: 1) Blanding av olika ämnen (och därmed effekterna) blir allt mer omfattande vilket gör att; 2) Spridningen är viktig att fastställa. Analys av farligt avfall behandlas närmare i avsnitt 11.2.6.

4.1.2 The polyproject on risk and safety of technical systems

Gheorghe listar några viktiga ”lärdomar” som polyprojektet lärde de inblandade parterna om regional riskbedömning:

- Det är viktigt att inte tillvägagångssättet är för förenklat.
- Man bör inte försöka utesluta politiskt engagemang eller folklig inblandning i något steg. Uppmaningen är att utveckla en risktrippel: säkerhetskultur, miljömässig medvetenhet och kriiskultur
- Ett starkt och interaktivt managementramverk behöver etableras för projektet redan från starten.
- Legala spörmål på såväl lokal som nationell nivå måste besvaras innan en omfattande regional bedömning av riskerna kan genomföras.
- Det finns ett behov av specialiserade databaser eftersom sådana reducerar osäkerheten i slutresultatet.
- Nytjandet av tekniska verktyg kan spela en stor roll för möjligheterna att hantera risker.
- I regional riskbedömning bör alla risker tas med i beräkningarna.
- Säkerhetskulturen, allmänhetens deltagande och kommunikation av risker är viktiga aspekter i processen för regional riskhantering.

4.2 Metodologiska aspekter i IRRASM

Gheorghe (1996) menar att regionala riskbedömningar innebär att en komplex metodik måste tillämpas för att kunna handskas med risker mot hälsa och miljö, under såväl normal drift som vid olyckstillstånd och där man involverar ett stort antal industrier, effekter, regleringar och aktörer. Gheorghe definierar IRRASM som en tvärvetenskaplig process med demokratisk prägel där en mångfald av kunskapsdiscipliner, metoder och tekniker samverkar. Ambitionen är att försöka kombinera mer än ett angreppssätt, mer än en riskkälla (t ex riskerna från en anläggning under såväl normal drift som under olycksartade situationer), och både källa och receptor (Fedra 1998). Mjuka och hårda metoder bör integreras liksom expertutlåtanden och allmänhetens åsikter. En integrativ metodik betonar den demokratiska beslutsprocessen och därmed också bruket av beslutsstödande system för att hjälpa de beslutsfattare som inte är experter på risker och fysisk planering. Användningen av flera tekniska verktyg och dynamiska simuleringsmodeller bl a med kapacitet att utföra rumsliga analyser (bl a GIS) är viktiga inslag p g a de stora och komplexa informationsmängderna16.

Gheorghe (1995) anser det viktigt att det inte bara är tekniker, och i viss mån ekonomer, som utför riskanalyser, vilket är brukligt, utan att också andra forskningsdiscipliner involveras i processen. Samhällsveteterna kan t ex effektivisera relationen mellan teknikernas ingenjörmässiga riskanalyser och samhällets behov och förväntningar. Ett resultat av att integrera samhällsveteterna i processen skulle således kunna vara att allmänhetens tillit ökar till myndigheternas arbete, vilket i förlängningen torde innebära att det blir lättare att genomföra nödvändiga förändringar av samhället (t ex olika större infrastrukturella projekt)

För att integrera olika riskbedömningsmetoder på regional nivå måste ett antal metodologiska nyckelfrågor besvaras. Gheorghe & Nicolet-Monnier (1995) ger några exempel på vad som bör beaktas i en studie:
1. Principer för avgränsningar av tekniska system och teknologiska kedjor.
2. Metoder för att bedöma relationen mellan dos och effekt vad gäller hälsofrågor.
3. Metoder för att bedöma olika tekniska systems effekter på miljön och speciellt möjligheten att utveckla indikatorer för miljörisker.
5. Hur skall osäkerheter hanteras i jämförande riskanalys och dessutom sett över tid?
6. Hur skall risker för olyckor i olika tekniska system jämföras?
7. Är det möjligt att utveckla en generell riskindikator för alla risker?
8. Hur skall bra metoder för att presentera jämförelser och resultat se ut?

15 Värt att notera är att Gheorghe var vetenskaplig sekreterare i IAEA under arbetet med Guidelines for Integrated Risk Assessment in Large Industrial Areas (1998) och dessutom medverkade i The polyproject on risk and safety of technical systems
16 Det är viktigt att poängtera att Gheorghe & Nicolet-Monnier framför allt för sitt resonemang utifrån teknologiska risker som riktar sig mot miljö, hälsa och säkerhet.

55
Integrerad regional riskbedömning och riskhantering

En IRRASM-studie kan omfatta ett viss antal parametrar beroende på syftet med undersökningen. Gheorghe (1996) ger några exempel på vad som kan ingå i en IRRASM-studie:

- Identifikationen av potentiella källor.
- Uppbyggnad av scenarier; t ex med hjälp av händelseträder (se avsnitt 2.2.1).
- Samspelet mellan naturliga faror och operativa tillstånd bland tekniska system.
- Riskbedömning för utsatta mål.
- Säkerhetsagerande på anläggnings- och regional nivå.
- Speciella risk- och säkerhetsfrågor.

Utifrån parametrarna ovan kan målet för en IRRASM-studie variera i hög grad och bl a handla om att:

- Prioritera faror i en region.
- Identifiera individuella och sociala riskkriterier.
- Identifiera riskkällor och uppskatta risker för olika mål i regionen.
- Utföra olycks- och konsekvensbedömning i det berörda området.
- Bedöma nivån av säkerhet i regionen och jämföra den med explicita eller implicita normer.
- Integrera olika risktyper i regionen och utforma akuta handlingsplaner.

Många av punkterna ovan implicerar behovet av att kunna jämföra olika risker med varandra. Vad beträffar att bedöma och jämföra miljöpåverkan från tekniska system existerar framför allt två begränsningar:

1. Effekterna är inte alltid möjliga att kvantifiera.
2. Det finns inte någon generell överenskommelse om vad som skall kvantifieras.

För hälsoeffekter råder det, som tidigare konstaterats i avsnitt 3, osäkerhet om dos-effektförhållande för många kemikalier vilket gör det svårt att jämföra risker från doser av olika ämnen. Effekterna är dessutom ofta fördröjda.

I avgränsningen av riskanalysen måste hänsyn tas till syftet, tid och rum, vilka delar och faser i systemet som undersöks, vilka konsekvenser som skall bedömas. Gheorghe och Nicolet-Monnier (1995) menar att det är mycket viktigt att involvera många olika befolkningsgrupper i det här arbetet så att alla relevanta aspekter täcks in.

5 Sårbarhetsanalys

5.1 Definition av sårbarhetsanalys

Sårbarhetsanalysen kan betraktas som släktningar till riskanalyserna och torde liksom dessa kunna delas in i ett spektra från kvalitativa och semi-kvantitativa metoder till kvantitativa. Sårbarhetsanalysen började användas för omkring 15 år sedan, främst för att undersöka sårbarheten i datorsystem och annan informationsteknologi (Einarsson 1999). Sedan dess har sårbarhetsanalysen bl a utnyttjats för att undersöka företagens robusthet och överlevnadsförmåga då de utsätts för olika typer av hot och påfrestningar. På senare tid har emellertid sårbarhetsanalysen också använts för att mäta olika systemets sårbarhet i andra sammanhang.

Figur 5.1 åskådliggör i grova drag skillnaden mellan omfattningen av en riskanalys och en sårbarhetsanalys. Riskanalysen fokuserar på den konsekvenskedja som kan inträffa till följd av en olycksmässig händelse. De barriärer och säkerhetsfunktioner som är dimensionerade för att begränsa omfattningen av ett skademässigt händelseförlopp studeras främst utifrån tillförilitet och kapacitet.

Figur 5.1. Skillnaden mellan en sårbarhetsanalys och riskanalys
Källa: Einarsson & Rausand 1998 och Einarsson 1999
Anmärkning: Bilden är en sammanjämnning av olika versioner i de båda källorna samt den text som förklarar dem.
Integrerad regional riskbedömning och riskhantering

Sårbarhetsanalysen betonar istället systemets överlevnadsförmåga och fokuserar på vilka skadereducerande och återuppbyggande tillgångar som finns för att reducera sårbarheten vid en olyckshändelse.

Ett system påverkas av såväl interna som externa riskfaktorer. I figur 5.2 görs en kort översikt över riskfaktorerna i ett industriellt, teknologiskt system. Alla kan inte analogt appliceras på ett socialt, eller ekologiskt system varför uppsättningen riskfaktorer under sådana omständigheter måste modifieras.

5.2 Metoder för att mäta och jämföra sårbarhet

Nedan redovisas några praktiska metoder som har utvecklats i de nordiska länderna och USA för att mäta och jämföra olika aspekter av robusthet/sårbarhet. Översikten gör inte anspråk på att vara fullständig utan är ett exempel på hur sårbarhetsanalyser kan användas på olika samhällssystem. De flesta av metoderna nedan grundar sig på någon form av scenariobeskrivning/simulering av händelseförlopp.

5.2.1 Sårbarhetsmatriser

Genom att i t ex en stad undersöka olika objekt som kan utgöra riskfaktorer, utifrån sannolikheten för att en skada skall inträffa, liksom konsekvenserna av den, kan utfallet sättas in i riskmatriser. Riskmatrisen gör riskbilden överskådlig och det blir därför förhållandevis enkelt att prioritera åtgärder. Ju närmare det övre högra hörnet riskfaktorn är belägen, desto större är risken. I en annan matris kan sedan risken mätas mot kostnaden för ökad säkerhet/robusthet.

5.2.2 Nyckeltal och indikatorer för närsamhällets robusthet (semi-kvantitativ metod)

I en FOA-studie utförd av Bergström m fl (1998) har man, på uppdrag av ÖCB, utarbetat ett stort antal (151 st) nyckeltal för att värdera existerande eller planerade närsamhällens (grannskap och bostadsområden) robusthet 17. Som grund för att utveckla dessa har man utgått från ett antal sakområden inom vilka robustheten kan vara problematisk i ett samhälle. I sakområdena identifieras egenskaper som i samhällsvetenskaplig teori kan anses karakterisera robusthet. Den vänstra kolumnen i tabell 5.1 visar sakområdena medan kolumnerna A-D redogör för robusthetsaspekterna. Med tabell 5.1 som underlag har en nyckeltalsplan med olika index framställts för att mäta robustheten inom varje sakområde och enligt de fyra teman A-D i tabell 5.1. I tabell 5.2 visas några exempel på nyckeltalen i sakområdet försörjningssystem el och värme. VSM visar i vad mån nyckeltalet indikerar att verksamheten:

- är värdeskapande och uttrycks i verkningsgrad, V.
- är hushållande, S (snålar) med en specifik resurs.
- har en stor resursbas, att den är av god kvalitet och/ eller tillgänglig för verksamheten, d v s att det finns en marginal, M.

17 Konkret har nyckeltalsplanen utvecklats för Hammarby Sjöstad i Stockholm och Lindeborg i Malmö
Integrerad regional riskbedömning och riskhantering

Tabell 5.1 Matris som åskådliggör sambandet mellan sakområdena och robusthetsegenskaperna i ett samhälle. Förslag ges till vad robusthet rent konkret innebär för de olika fallen. Utifrån denna matris utarbetas nyckeltal på robusthet.

<table>
<thead>
<tr>
<th>Samhälleliga Sakområden</th>
<th>A) God relation till resursbasen</th>
<th>B) Flexibilitet</th>
<th>C) Oberoende</th>
<th>D) Orientering inlärmning och handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Försörjningsystem – el och värmeförstärkning</td>
<td>Säkerhet mot el- och värmeavbrott</td>
<td>Möjligt att avstå från utrymmen och funktioner</td>
<td>Energilager, lokal försörjning</td>
<td>Motivation att hushålla med el och värme</td>
</tr>
<tr>
<td>Försörjningsystem vatten, avlopp och avfall</td>
<td>Reparations- och servicekompetens finns lätt tillgänglig</td>
<td>Möjligt att kortstiktnät vänja mellan leverantörer</td>
<td>Reservationsystem och tillgång till multitoa</td>
<td>Försörjningsplan för vatten</td>
</tr>
<tr>
<td>Kommunikationsystem för personer, varor och information</td>
<td>Mediatillgäng</td>
<td>Låg specifikation av kommunikationsbehov</td>
<td>Buffert, förmåga att (temporärt) avstå från kommunikation</td>
<td>Problemlösning i flera små steg</td>
</tr>
<tr>
<td>Försörjningsystem livsmedel</td>
<td>Relativ prisnivå i den lokala livsmedelsbutiken</td>
<td>Kunskap och utrustning för matlagning</td>
<td>Lagringsmöjligheter för olika slags livsmedel</td>
<td>System för spridning av information för störning</td>
</tr>
<tr>
<td>Markförhållanden och yttre miljö</td>
<td>Icke hårdgjord markyta</td>
<td>Möjligt att (tillfälligt) bo på annan plats</td>
<td>Lokalt omhändertagande av dagvatten</td>
<td>Tillgång till radonmätare</td>
</tr>
<tr>
<td>Förvaltning och byggnärls utformning</td>
<td>Kvalitetssäkering i produktionen</td>
<td>Möjligt att reparera skador</td>
<td>Oberoende av specifika reservdelar</td>
<td>Dokumentation, inspektion och teknisk kunskap</td>
</tr>
<tr>
<td>Näringsliv, social service och social kvalitet</td>
<td>Lokal arbetsmarknad, daghem och varierande lägenhetsstorlekar</td>
<td>Många kompetenser, förmåga att ta deltid och OB-tid</td>
<td>Stöd till ungdomar och arbetslösa; arbetsbyte</td>
<td>Föreningsaktiviteter, mötesplatser, solidariitet inom området</td>
</tr>
</tbody>
</table>

Källa: Bergström m fl (1998)

Tabell 5.2 Utdrag ur den tabell som redovisar nyckeltal för robusthet i drift och planering i grannskap

<table>
<thead>
<tr>
<th>Nyckeltalsnamn</th>
<th>Täljare</th>
<th>Nämndare</th>
<th>Tema</th>
<th>VSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säkerhet mot elavbrott</td>
<td>Säkerhet vid elavbrott skala 1-3</td>
<td>I (siffran 1)</td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>Elflexibilitet</td>
<td>Sätt att få fram el, st</td>
<td>1</td>
<td>B</td>
<td>M</td>
</tr>
<tr>
<td>Energilager</td>
<td>Mängd energi som lagras MWh</td>
<td>Gramskapets energianvändning per dyn, MWh</td>
<td>C</td>
<td>M</td>
</tr>
<tr>
<td>Elhushållningsmotivation</td>
<td>Lägenheter med elmätare, st</td>
<td>Alla lägenheter, st</td>
<td>D</td>
<td>M</td>
</tr>
</tbody>
</table>

Källa: Bergström m fl (1998)

I FOA-rapporten (Bergström m fl 1998) har flera olika indikatorer utvecklats inom varje sakområde och tema vilket gör att nyckeltalsplanen framstår som ett smörgåsbord av indextal. Ett urval av dessa indikatorerna kan grupperas och läggas in i ett naturekonomiskt redovisningsprogram. Tabell 5.3 visar några exempel på de utmaningar som kan riktas mot sakområdet "Försörjningssystem – el och värmeförstärkning" i några olika miljötyper. Tabellen visar att överlevnad handlar om olika aspekter beroende på vilken miljötyp som råder.

Genom simuleringar är det möjligt att utvärdera olika utvecklingsalternativ beroende på vilken miljötyp som råder. Bergström m fl (1998) anser att det är möjligt att skapa
Tabell 5.3 Några typer av utmaningar för el och värmeöversörjningen som kan uppstå i olika miljötyper
Källa: Bergström m fl 1998

<table>
<thead>
<tr>
<th>Miljötyp</th>
<th>Plötslig utmaning</th>
<th>Smygande utmaningar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabil slumpmässig</td>
<td>Strömbrott</td>
<td>Osystematiska spänningsvariationer</td>
</tr>
<tr>
<td>Stabil strukturerad</td>
<td>Strång kyla, elransoneringsvändningar</td>
<td>Föröverlänkning av installationer, ogynn-</td>
</tr>
<tr>
<td>Instabil regerande</td>
<td>Illegitima/felaktiga installationer slår ut system</td>
<td>samt differentierade taxor</td>
</tr>
<tr>
<td>Turbulent kaotisk</td>
<td>Dramatisk prishöjning</td>
<td>Tjuvkopplingar, stöld av el</td>
</tr>
</tbody>
</table>

scenarier genom att utveckla tre modeller som kopplas till varandra. Modellerna representerar:
1. De olika utmaningarnas struktur och förlopp.
3. Den sista modellen är en resultatmodell där nyckeltalen grupperas och infogas i ett natur- rekonoministiskt redovisningsprogram.

Bergström har upprättat ett arbetsschema i fem steg för att mäta och simulera testa robustheten i grannskap (såväl planerade som existerande). Stegen sammanfattas i:
1. Tillverka en naturekonomisk modell av grannskapet så att så många nyckeltal som möjligt kan anslutas till modellen.
2. Överför modellen genom att gruppera nyckeltalen strategiskt i en kontoplan, en nyckeltalsplan och en svärmplan i ett naturekonomiskt redovisningsprogram.
3. Om man simulerar robustheten i ett existerande område rekommenderas att man arbetar med tidsserier för att identifiera variationer.
5. En känslighetsanalys avslutar arbetsgången. En bedömning görs här av hur värdet på de konton som berörs skall förändras med avseende på hur många konton som berörs och hur stora förändringarna är.

Nedan redogörs för tre olika metoder med syfte att mäta sårbarheten på olika nivåer i samhället. De baseras på sårbarhet för ett företag men fokuserar i olika grad på det tekniska systemet, företaget och kommunen.

5.2.3 Sårbarhet i tekniska system
Einarsson och Rausand (1998) har utvecklat en scenariobaserad sårbarhetsanalys för komplexta industriella system och med vars hjälp det är möjligt att kvantifiera konsekvenserna av ett händelseförlopp. Metoden har bl a använts på Island för att undersöka sårbarheten i elsystem. En sådan metod torde emellertid, vilket diskuterats tidigare, även kunna användas för att
Integrerad regional riskbedömning och riskhantering

bedöma sårbarheten i sociala och ekologiska system. Tillvägagångssättet kan ses som en systematisering och vidareutveckling av figur 5.3 (sårbarhetsmatris). Analysen utförs i åtta steg (Einarsson 1999, Einarsson & Rausand 1998):
1. Identifikation av riskkällor m h a checkclistor.
2. Identifikation av olycksscenarier. De olika scenarierna kan framställas med hjälp av hän- delseträdd.
3. Uppskattning av scenariernas sannolikhet.
4. Bortgållring av scenarioer med låg sannolikhet.
5. Uppskattning av de kvarvarande scenariernas effekter på människor, egendom och affärs- liv.
6. Identifikation och utvärdering av skadereducerande resurser.
7. Identification och utvärdering av resurser för att återuppbryga och återskapa företaget.

Två arbetsblad har utarbetats som ett hjälpmedel. I det första arbetsbladet (se figur 5.4) försö- ker man identifiera de hot som föreligger, vilka scenarion och oönskade effekter de kan leda till och vilka resurser som finns för att möta hoten. I det andra arbetsbladet (se figur 5.5) är syftet att grovt kvantifiera och rangordna de olika scenarierna som identifierats i blad 1.

![Fig 5.4 Arbetsblad nr 1 i Einarsson & Rausands scenariobaserade sårbarhetsanalys](Källa: Einarsson & Rausand 1998)

<table>
<thead>
<tr>
<th>Hot</th>
<th>Scenario</th>
<th>Sannolikt? (ja/nej)</th>
<th>Potentiell, ommedelbar effekt?</th>
<th>Resurser/system/planer för Skadereduktion/ återuppbyggnad/ etc</th>
<th>Anmärkningar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
</tbody>
</table>

![Fig 5.5 Arbetsblad nr 2 i Einarsson & Rausands scenariobaserade sårbarhetsanalys](Källa: Einarsson & Rausand 1998)

<table>
<thead>
<tr>
<th>Scenario (brådsko)</th>
<th>Sannolikhet för scenario</th>
<th>Konsekvenser av scenario</th>
<th>Resurser för skadereduktion/ återuppbyggnad/ etc</th>
<th>Summa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr. och Beskrivning</td>
<td>Påverkan på människa</td>
<td>Miljömässig påverkan</td>
<td>Påverkan på affärsverksamhet</td>
<td>Egendoms påverkan</td>
</tr>
<tr>
<td>(4-0)</td>
<td>(4-0)</td>
<td>(4-0)</td>
<td>(4-0)</td>
<td>(4-0)</td>
</tr>
<tr>
<td>1</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Endast diskreta händelser uppmärksammas i scenarierna. Kontinuerliga och inkrementella förändringar av systemet anses inte relevanta i analysen såvida de inte ger upphov till en specifik händelse. Sannolikheten, konsekvenserna och de interna och externa resurser som finns för att möta scenarierna viktas och den totala konsekvensen av de olika scenarierna erhålls genom enkel summering enligt följande formel (Einarsson & Rausand 1998).
Metoder och verktyg för riskbedömning och riskhantering

\[C_i = k_h \cdot C_{h,i} + k_e \cdot C_{e,i} + k_b \cdot C_{b,i} + k_p \cdot C_{p,i} \]

Där:
\(C \) = konsekvensen av ett scenario och
\(K \) = vikt för konsekvensen

Index:
i står för scenario nummer i
\(h \) betecknar människor (t ex \(C_{h,i} \) = konsekvensen av scenario i med avseende på människor).
e är uttryck för miljö
\(b \) betecknar affärslivet
\(p \) står för egendom

Den totala rangordningen mellan scenarierna beräknas genom att för varje scenario multiplicera sannolikheten med konsekvensen och sedan dra ifrån (den eventuellt viktade) summan för de skadereducerande resurserna. Scenariot med högst tal är det som betraktas som mest angeläget att åtgärda och hamnar därför högt i prioriteringsordningen. En annan, enklare metod, är att använda en riskmatris (jämför figur 5.3).

5.2.4 FEMA’s guide för krishantering i företag

Nästa steg består i att utföra självtra sårbarhetsanalysen. För detta används en metodik baserad på arbetsblad som liknar Einarsson och Rausands (1998). I arbetsbladets kolumner ifylls oönskade händelser, dels sådana som kan drabba företaget och dess anläggning men också det samhälle i vilket man verkar. Faktorer som beaktas är bl a sådana som tidigare har inträffat i samhället (olyckor med transport av farligt gods, naturkatastrofer etc), är relaterade till det geografiska läget (t ex närhet till kärnkraftverk), hör samman med teknologi (t ex problem med telekommunikationer), mänskliga felhandlingar (p g a dålig utbildning, dåligt underhåll o s v) och fysiska (anläggningens konstruktion) och juridiska faktorer (vilka olyckor är man ålagd att handskas med?). Sannolikheten för varje händelse rangordnas i enlighet med subjektiva värderingar från 1-5, där 1 är låg och 5 är högt. Likadant görs för den potentiella påverkan händelsen har på människor, egendom och affärsverksamheten. Därefter bedöms och poängsätts de interna och externa resurser som finns för att bemöta de oönskade händelserna. Genom att summera varje scenario blir det möjligt att identifiera de scenarion som fortsättningsvis behöver prioriteras i krishanteringsarbetet. En plan för hur man skall återhämta sig från en olycka och återuppbygga verksamheten bör också upprättas. I denna skall diskuteras

\(^\text{18} \) Med kris avses här en oväntad händelse som inträffar och orsakar skada på människa, egendom, affärsverksamhet eller t o m dödsfall, d v s klart riskrelaterade problem.
strategier för att ersätta förlorad nyckelpersonal, flytta till alternativa platser, ersätta förlorad utrustning etc.

5.2.5 Risk- och sårbarhetsanalyser i kommuner

I det fjärde delsteget handlar det om att systematisera de identifierade riskerna. Detta kan bl a låta sig göras genom att riskerna sätts in i en riskmatris. Om riskerna konsekvens- och sannolikhetsmässigt skiljer sig åt väsentligt i frestand och krigstid kan det vara lämpligt att upprätta två matrizer. I det femte delsteget identifieras potentiella sätt att reducera riskerna och sårbarheten, antingen genom preventiva eller skadereducerande åtgärder. DSB poängterar att åtgärder som genomförs för frestand även har betydelse för sårbarheten i krigstid. De riskreducerande åtgärder kan delas in i tekniska, operationella och/eller organisatoriska insatser. Tekniska åtgärder inkluderar förbättringar i design eller konstruktionsmetoder, operativa ingrepp handlar bl a om övervakning och rutiner för underhåll. Organisatoriska aspekter består i träning, fördelning av ansvar och samordning av uppgifter. De föreslagna åtgärderna bör genomgå en grov cost/benefit-analys.

Då analysen genomförs fortsätter man med steg tre i vägledningen. Arbetsgruppen presenterar då sina slutsatser för styrgruppen. Redogörelsen bör omfatta alla antaganden, avgrän---
Metoder och verktyg för riskbedömning och riskhantering

ningar, osäkerheter, förenklingar och värderingar. Likaså skall analysen omfatta förtecknade risker och sårbarhet samt behovet av fortsatta och mer detaljerade analyser.

Integrerad regional riskbedömning och riskhantering
6 Beslutsmetoder

6.1 Inledning, definitioner MCDM, MADM, MCA, SDSS

Ett beslut kan definieras som en öterkallelig allokering av resurser. "Bra" beslut produceras av en kvalitetssäkrad beslutsprocess. Detta innebär bl a att processen:

- Involverar samtliga personer med legitima intressen i beslutet.
- Identifierar de förmånliga handlingsalternativen.
- Är byggd på den "rätta" mängden information.
- Är logiskt sund.
- Utnyttjar resurser effektivt.
- Producerar resultat som är konsistenta med beslutsfattarens preferenser.

MCDM (multi criteria decisionmaking) innebär ett beslutsfattande baserat på ett flertal beslutskriterier och kan grovt indelas i MADM, multi attribute decisionmaking och MODM, multi objective decisionmaking. MADM kräver att val görs mellan beskrivna och tillgängliga alternativ specificerade av sina attribut (ibland kallade "kriterier"). I motsats till MADM innebär ett MODM-problem att man inom processen aktivt utformar eller skapar det bästa alternativet med utgångspunkt från ett antal sinsemellan motstridiga målsättningar. Om det finns en direkt motsvarighet mellan attribut och målsättningar förvandlas MODM-problemet till ett MADM-problem. Vi skall i fortsättningen enbart koncentrera oss på MADM-metoden. Ytterligare ett begrepp som bör definieras är SDSS, Spatial Decision Support System. SDSS kombinerar multikriteriemetoder med beslutstörer i syfte att stödja användaren att analysera konsekvenserna av olika alternativ och fatta optimala beslut. SDSS behandlas utförligare i avsnitt 9.3.

Slutligen betonas att benämningarna "kriterier", "attribut" och "parameter" i detta sammanhang betecknar i stort sett samma typ av faktorer och alltså kan anses utbytbara.
6.2 Verktyg för det totala beslutsproblemet

- definiera problemet.
- bedöma miljö- och hälsorisker.
- bedöma övriga risker.
- avgöra om åtgärd är nödvändig.
- samla information och data.
- identifiera alternativ.
- välja alternativ.
- evaluerar alternativ.
- jämföra och välja alternativ.
- kommunikera beslut.

Med dessa tio kategorier som bas redovisar bilaga 3 en lista på mer än 100 tillgängliga metoder, sorterade i alfabetisk ordning. Listan är medtagen enbart för att demonstrera den enorma variationen i tillgängliga metoder. Val av verktyg måste bl a ske med utgångspunkt från typ av riskkälla, problemets storleksordning (nivå på analysinsats), aktuell led (kategori 1-10 ovan) i beslutsprocessen, grad av kvantifiering, grad av osäkerhetsanalys (användning av probabilistiska metoder). Tabellen illustrerar också mångsidigheten i begreppet ”verktyg”: ett verktyg kan vara en teori eller modell, en metod att ta reda på allmänhetens åsikt, en metod att identifiera tillämpliga bestämmelser och förordningar, ett övervakningssystem, mjukvara till ett expertsystem, en typ av presentations- eller informationssystem. De verktyg som berördes i avsnitt 3 är att hänföra till kategorierna 2 och 3 ovan; metoder att bedöma hälso- och miljörisker samt övriga risker.

Gemensamt för alla dessa tre metoder eller verktyg är att de har betraktats som alltför komplexa, arbetskrävande och kompetenskrävande för att ingå i standardmjukvaror för SDSS. Här har i stället uppmärksamheten koncentrerats på en användning av de MADM-metoder som kortfattat beskrivs i avsnitt 7 nedan. Av MADM-metoder ingår i bilaga 3 ovan: Analytical Hierarchy Process (AHP), Simple Multi-attribute Rating Technique (SMART) samt Weighted Scoring Methods. Beteckningen är något oegentlig; egentligen är alla tre metoderna varianter av vad som sammanfattningsvis kan betecknas som ”weighted scoring methods”. En lämplig svensk beteckning kan vara ”viktade ranking-metoder” eller index-metoder.
Ranking-metod byggd på viktning av parameter

7 Allmän karakterisering Multi Attribute Decision Making-metoder

Inom MADM-området finns en stor uppsättning olika metoder. Yoon och Hwang anger i sin lärobok en klassificering som innehåller 13 olika metoder beroende på typ och omfattning av tillgänglig information. Vi kommer här enbart att beskriva metoder som funnit användning på området integrerad riskbedömning. För dessa finns ett antal gemensamma begrepp:

Alternativ: Ett ändligt antal alternativ blir utsatta för en screening, prioriteras, väljs och/eller rankas. Synonyma begrepp är ”handlingsalternativ”, policy, handling etc.

Flera attribut: Varje problem definieras av ett antal attribut (kriterier). En viktig del av beslutsprocessen är att generera nödvändiga och lämpliga attribut. Antalet attribut beror på problemet och kan variera från några få till över 100-talet. Om någon skulle komma på idén att direkt använda index-metoder på nyckeltalen i FOA-studien om sårbara grannskap skulle alltså antalet parametrar = 151. Synonyma begrepp är ”mål” eller ”kriterier”.

Viktning av attribut: Nästan samtliga MADM-metoder kräver information beträffande den relativa betydelsen av de ingående attributerna eller parametrarna. I enklaste fall anger beslutsfattaren själv direkt värdet på de olika vikterna; vanligen bestäms vikterna genom någon av metoderna nedan.

Målsättningen är här inte att välja universitet eller eget företag eller stort företag utan att finna det företag, universitet eller typ av eget företag som bäst uppfyller målsättningen. Tillvägagångssättet är då att definiera ett "scoring index” enligt något av uttrycken:

\[
\text{Index} = \sum_{i} w_i x_i
\]

eller

\[
\text{Index} = \prod x_i^{w_i}
\]

7.2 Analytic Hierarchy Process

7.2.1 Beskrivning

7.2.2 Problemstrukturering

7.2.3 Parvis jämförelse

När samtliga parvisa jämförelser är gjorda görs en sammanvägning och beräkning av vikter. Den görs normal med dator och ger som resultat en viktad rangordning av alternativen. I bilaga 2 redovisas en approximativ metod för handräkning av vikter.

7.2.4 Begränsningar/Möjligheter
I fall då rangordning på preferensbasis skall göras, då inte risken kan uttryckas i monetära termer, är metoden mycket bra. Det är också möjligt att kombinera en rangordning efter beräknad risk med en preferensrangordning med AHP-metoden. I detta fall betraktas kostnaden som en av alla andra parametrar.

Tabell 7.1 Numerisk och verbal skala för att jämföra alternativ i en AHP-analys.

<table>
<thead>
<tr>
<th>NUMERICAL SCALE</th>
<th>VERBAL SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>Equal importance of both elements</td>
</tr>
<tr>
<td>3,0</td>
<td>Moderate importance of one element over another</td>
</tr>
<tr>
<td>5,0</td>
<td>Strong importance of one element over another</td>
</tr>
<tr>
<td>7,0</td>
<td>Very strong importance of one element over another</td>
</tr>
<tr>
<td>9,0</td>
<td>Extreme importance of one element over another</td>
</tr>
</tbody>
</table>
Följande för- och nackdelar har identifierats vid användning av metoden:

+ AHP-metodens styrka ligger i den hierarkiska problemstrukturering som görs. Härigenom tappas inte de väsentliga faktorearna bort eftersom de kommer högt upp i trädet innan det har hunnit växa ut.

+ Den parvisa jämförelsen, som ju görs på varje nivå och med avseende endast på nästa högre nivå, gör att man inte behöver beakta hela problemet på en gång när man skall kvantifiera sin preferenser.

+ Utvärderingen är lätt eftersom den görs med dator. Om det endast är en enda expert kan den göras interaktivt med datorn.

- Nackdelen är att rankingmetoder är helt subjektiva. Problem kan därför uppstå när det gäller vem som är den egentliga beslutsfattaren. Om kvantifiering av utfall och sannolikheter kan göras är därför beslutsträd att föredra.

I avsnittet nedan ges några exempel på hur multikriteriemetoder kommit till praktisk användning, främst för bedömning och beslutsfattande inom miljöområdet.
8 Praktiska exempel på index eller MCA-metoder

8.1 Vattenkvalitet

På senare tid har biologiska och ekologiska riskbedömningsmetoder börjat användas, ofta i form av index, för att ge en allomfattande bedömning över den effekt som olika utsläpp ger upphov till. Ett exempel på ett sådant kemiskt index är det som konstruerats av Bach (1980) för att bedöma vattenkvaliteten i rinnande vattendrag. Ett antal kemiska parametrar, indikatorer (kriterier), mäts i olika vattenprover och värdena omvandlas till ett enskilt tal, index, vilket representerar den övergripande vattenkvaliteten i proverna. Det kemiska indexet, CI bestäms genom formeln:

\[CI = \Pi_{i=1}^{n} q_i w_i \]

CI är ett dimensionslöst tal på en skala från 0 till 100 där 0 representerar den sämsta kvalite-
ten och 100 den bästa. \(q_i \) är ett underliggande index för parameter nummer i och härleds ur förbestämda kalibreringskurvor. Det är också ett dimensionslöst tal på en skala från 0 till 100. \(w_i \) är en vikt för parameter nummer i. Talet har ett värde mellan 0 och 1 och summan av vik-
terna är lika med 1.

8.2 Miljöolyckainspekt

Försvarsvets forskningsanstalt, FOA (1997), har bl a utvecklat en indexmetod för att bedöma utredningsbehovet vid akuta olycksskador på miljöer i vatten och jord utifrån flera kriterier. I modellen inkluderas endast ett mindre, representativt, urval av kemikalieegenskaper och omgivningsfaktorer. I de fall en slutgiltig bedömning skall göras måste ytterligare faktorer vägas in. I indexet ingår data om:

- Akut toxicitet för vattenlevande organismer - \(Gi \)
- Lagrad/transporterad mängd kemikalie - \(M\dot{u} \)
- Kemikalians spridningsförutsättningar
 1. Kemikaliens inneboende rörlighet (konsistens - \(Ko \), vattenlösighet - \(L\dot{o} \))
 2. Omgivningens förmåga att sprida en kemikalie (avstånd till brunn eller vattendrag - \(Om \), grundvattnets djup och rörlighet, jordens genomtränglighet)

Informationen poängsätts enligt färdiga tabeller och delpoängen från de olika miljöolyckse-
egenskaperna kombineras för att erhålla en komplett bild av den berörda kemikaliens potenti-
al att orsaka en akut miljöskada. Miljöolyckainspektet beräknas enligt nedan:
Integrerad regional riskbedömning och riskhantering

Miljöolycksindex = Gi * Mä * [Ko+Lö+Om]

Poängen relateras därefter till en skala som uttrycker utredningsbehovet vilket är alltifrån en farobedömning till en inledande eller t.o.m fördjupad riskbedömning.

8.3 Indexmetoder och bestämning av brandsäkerhet

8.4 MADM och fysisk planering

• Medräkna icke påtagliga och ojämförbara faktorer i den konventionella cost-benefit metodologin.
• Införliva flera beslutsfattare i processen.
• Ta hänsyn till flera politiska aspekter och kunskaper från olika discipliner
• Framställa flera alternativa lösningar från vilka ett val kan göras.
• Se till externa effekter och regionala fördelningsfrågor.

• De berör en mängd olika sektorer (transporter, bostadssektorn, industri etc).
• Man handskas med ett öppet system vilket innebär att effekter kan flyta över gränserna och att effekter på olika nivåer därför måste tas med i beräkningarna. En rumslig konsekvensanalys är sålunda tvungen att ta hänsyn till, inte bara direkta effekter, utan även andra och tredje gradens effekter.

När väl de olika konsekvenserna har identifierats viktas den relativa betydelsen av dessa. Detta kan göras med diverse olika metoder och har diskuterats i avsnitt 6 och 7. I planerings-sammanhang kan vikten avvikt gälla en värdering mellan olika aspekter av att köra bil eller åka buss längs en sträcka (kostnad, säkerhet o.s.v.). Vad beträffar själva multikriteriemetoderna finns det flera att välja på med olika egenskaper. De kan ha förmågan att framställa olika många alternative och vara av kvalitativ eller kvantitativ art. Innan personatornernas stora genombrut användes ofta värderingsmatriiser för att analysera de olika alternativen. I dag kan multikriteriemetoder integreras med GIS vilket innebär stora förenklingar, visuella förbättringar och betydligt fler möjligheter. I avsnitt 9.3 nedan redovisas detta mer i detalj.
9 GIS och risker

9.1 Kunskapsöversikt GIS

I figur 9.1 framgår det att objekten karakteriseras av typ, attribut, relationer, geometri och kvalitet. Objekten kan vara fysiska, bestå av klassifikationer, vara händelser, artificiella etc. De representeras grafiskt av punkter (ingen dimension) linjer (vektor) och areor (innesluten av en polygon eller i rasterform).

![Fig 9.1 Processen att omforma den fysiska verkligheten till en digital karta](Källa: Bernhardsen 1992)
Informationen om objektens attribut lagras i databaser (ruta fyra) med en referens till objekten. Objektens relationer kan delas in i sådana som:
1. Kan beräknas från a) objektens koordinater; b) objektens struktur (t ex ändpunkt på linje).
2. Måste infogas som attribut.

Kvaliteten i slutresultatet bestäms bl a av objektbeskrivningens kvalitet, t ex grafisk noggrannhet, uppdateringsmöjligheter och upplösning. En lämplig databas väljs med hänsyn till datainsamling, kontroll, struktur, lagring, analysförmåga etc.

Objekten och deras attribut lagras i olika lager i GIS. Man skiljer mellan raster- och vektoralager (se figur 9.2 och 9.3). De vektorbaserade byggs upp av punkter, linjer och polygoner. En linje är uppbyggd av två eller flera punkter som är sammankopplade. Polygoner består av en uppsättning punkter som är sammankopplade och där den första och sista koordinaten i serien är identiska.

Det andra sättet att lagra information på är i form av raster, d v s i ett fält med regelbundet mönster bestående av olika celler. Varje cell tilldelas ett värde med avseende på vad som skall representeras i verkligheten (t ex 1 för skog 2 för åker etc). Cellvärdena kan referera till fysiska variabler men kan också redogöra för avstånd m m. En cell kan endast tilldelas ett värde. Inom varje cell anses därför samma förhållande råda vilket kan innebära en förenkling av verkligheten. Resolutionen beror på cellstorleken och är konstant. Den geometriska läget för varje cell bestäms av dess rad och kolumnnummer. Genom att använda flera lager kan objekten omfatta flera attribut. Rasterbaserade system innehåller därför ofta många lager. Raster och vektordata används med olika syften då för- och nackdelar varierar. I tabell 9.1 görs en överskådlig analys över dessa.
Generellt kan sägas om GIS att flexibiliteten och modelleringsmöjligheterna är stora och flera olika framställningar kan lätt göras då väl informationen lagrats. De möjligheter som föreligger med ett GIS innefattar bl a:

- Beskrivning av position och utbredning av olika objekt.
- Beskrivning av rumslig fördelning mellan olika fenomen.
- Beskriva förändringar i tiden.
- Beskriva förhållanden och samverkan mellan olika teman.
- Studera flöden.
- Modellera situationer.
- Ställa interaktiva frågor.
- Hantera olika geometriska problem.

I det följande görs först en översikt över hur GIS kan sammankopplas med andra modeller för att beräkna risker, i det här fallet från spridning av utsläpp. Därefter visas hur GIS kan sammankopplas med multikriteriemetoder och beslutsstödjanande system så att hänsyn kan tas till en mängd relevanta men svåröverskådliga riskkriterier.

9.2 GIS som ett verktyg för att visa spridning av utsläpp och beräkna riskavstånd

Många samhällsrisker härstammar från skadliga ämnen som sprids i rummet, antingen i samband med industriella aktiviteter eller mer diffust, som en följd av urbaniseringen och det moderna jordbruket (Gheorghe & Nicolet-Monnier 1995). En mängd metoder och modeller har utvecklats för att beräkna spridningsmönstret från de olika källorna. Komplexiteten man kan/bör ta hänsyn till är enorm. För att göra korrepta beräkningar måste flera aspekter beaktas; det specifika ämnet (attribut), hur det sprids från källan (t ex höjd på skorsten, spridnings-
integrerad regional riskbedömning och riskhantering

vägar (luft, vatten, jord), meteorologiska förhållanden, topografi etc.). Det finns flera modeller för att beräkna riskerna från spridning av skadliga ämnen. En benämning som förekommer för de modeller som beräknar spridning i luft är GPA, Geographic Plume Analysis.

Det har blivit allt vanligare att integrera spridningsmodeller med GIS. Genom att göra så, skapas ett verktyg med mycket god kapacitet för att beräkna, åskådliggöra, simulera och analysera olika utsläpp och händelseförlopp. GIS i kombination med GPA gör det möjligt att jämföra resultatet från spridningsmodellen med annan rumslig information, t ex demografiska och socioekonomiska data och undersöka korrelationer i rummet mellan förekomsten av höga halter av luftföroreningar och invånarnas socioekonomisk status för olika geografiska områden (Osleeb & Kahn 1999).

En nackdel med simuleringar, och spridningsberäkningar i allmänhet som bör påpekas, är att osäkerheten är mycket stor i slutresultatet p g a komplexiteten. Till följd av att stora datamängder krävs för att göra korrekta beräkningar är processen mycket tidskrävande och det är dessutom ofta svårt att få tag på nödvändig information. Noggrannheten kan således vara illusorisk.

Det finns två huvudtyper av spridningsmodeller, de som beräknar riskerna med olycksmässiga utsläpp (säkerhetsrisker) och de som härrörar från den kontinuerlig driften (hälso- och miljörisker). Båda har integrerats med GIS (se bilaga 5 för en överskådlig genomgång av olika spridningsmodeller som existerar på marknaden eller är under utveckling). Vad beträffar olycksriskerna råder det osäkerhet att ett utsläpp sker, var, av vad, under vilken tid och av vilken kvantitet. Vilka utsläpp som kommer av kontinuerlig drift är ofta känt, men däremot är det inte lika säkert var de sprider sig och vem som drabbas.

Källa: Johansson 1996
GIS och risker

9.3 GIS, multikriteriemetoder och beslutsstödande system, SDSS

En målsättning med IRRASM är att försöka ta hänsyn till flera olika kriterier för att bedöma och ta beslut i risksituationer. Det gäller t ex vid rumsliga konfliktsituationer där det inte existerar någon uppenbart optimal lösning. Beslutsfattande baserat på multikriteriemetoder ger, vilket bl a beskrivits i avsnitt 6, 7 och 8 ökade möjligheter att analysera komplicerade avvägningar som måste göras mellan olika mål, utveckla alternativa lösningar, ta med beslutsfattarens preferenser i beräkningarna och utvärdera alternativ grundade på flera beslutsfaktorer.

Centralt för rumsliga multikriterie-beslutsanalyser baserade på en kombination av GIS och MCDM är:
1. GIS förmåga vad beträffar datainsamling, lagring, uppdatering, manipulation och analys.
2. MCDM-verktygets kapacitet vad beträffar sammanställning av rumsliga data och beslutsfattarens preferenser och att omvandla dessa till endimensionella värden för att fatta olika alternativa beslut. Detta innebär en kapacitet att kunna göra komplicerade avvägningar mellan multipla värderingskriterier samtidigt som hänsyn tas till beslutsfattarens preferenser.

Vi har tidigare (se avsnitt 6.2) beskrivit tio led i beslutsprocessen. Simon (1960) gör en grövre och något annorlunda indelning i tre faser:
- Föreligger det ett problem (underrättelsefas)?
- Vilka är alternativen (designfas)?
- Vilka alternativ är bäst (beslutsfas)?

GIS och MCDM används i varierande grad vid olika tillfällen i beslutsprocessen. GIS spelar en viktig roll i de tidigare stegen medan betydelsen av MCDM ökar efterhand (se figur 9.4). GIS är ett viktigt verktyg för att definiera problemet och samla in och lagra data. M h a olika funktioner kan även olika besluts- och värderingskriterier omvandlas och överföras till en databas.

19 Läsaren görs åter uppmärksam på att MCA och MCDM behandlas synonymt i rapporten
Integrerad regional riskbedömning och riskhantering

När väl problemet definierats, koncentreras den rumsliga analysen till att utforma en uppsättning värderingskriterier (attribut eller mål se avsnitt 6 beträffande MCDM och MADM). I detta steget specificeras:
1. Den uppsättning mål som speglar alla intressen i problemet.
2. Vilka mått som behöver vidtas för att uppnå dessa mål (vilka attribut berörs?).

För att aggregera de olika kriterielagren används en, för ändamålet lämplig, beslutsregel eller aggregeringsfunktion som presenterar beslutsalternativen. En sådan beslutsregel strukturerar alla alternativ i enlighet med hur de samspelet med värderingskriterierna. *Simple additive weighting*, SAW och *analytical hierarchical process* är några exempel som tidigare diskuteras i avsnitt 7. SAW är en av de vanligaste metoderna och kan användas med ett vanligt GIS i såväl raster- som vektormiljö (Malczewski 1999). Beslutsproblemet handlar därmed om att identifiera de beslutsalternativer som ger det bästa resultatet, d.v.s. högst poäng.

De rumsliga multikriterianalyserna brukar ibland följas av en känslighetsanalys för att definiera osäkerheten i resultatet. Osäkerheten kan bero på den uppsättning data som kartorna baseras på men också på osäkerheten i specificeringen av beslutsfattarens preferenser (hur väl...

- Hjälpa till med att finna lösningar till komplexa problem.
- Snabbt kunna svara på oväntade situationer som uppstår p g a förändrade förhållanden.
- Testa olika lösningar i olika konfigurationer, snabbt och objektivt.
- Hjälpa till med kontroll och verkställande.
- Vara kostnadsbesparande.
- Tillhandahålla objektiva lösningar.

Exempel på rumsliga problem med riskanknytning, där SDSS utgör ett lämpligt verktyg, är då beslut om slutförvaring av radioaktivt avfall skall tas, var räddningstjänsten i kommunen bör placeras etc. SDSS hjälper sålunda till med att integrera allmänhetens röster i de politiska besluten. I avsnitt 11.3.1 ges några exempel på hur GIS, MCA och SDSS kombinerats och gjorts tillgängliga för en större grupp människor genom interna nätverk eller Internet.

I kapitel 10 nedan åskådar görs hur GIS alltmer kommmit att användas som ett centralt verktyg inom en annan sfär av riskhantering, den operativa sidan. Här demonstreras också kort hur GIS sammankopplat med andra verktyg (GPS, beslutsstödjande metoder, telekommunikation etc) progressivt förbättrar möjligheterna för denna typ av riskhantering.
Integrierad regional riskbedömning och riskhantering
10 Verktyg för operativ riskhantering med stöd av GIS och GPS

10.1 Översiktlig genomgång

Den tekniska utvecklingens betydelse för hantering av risker är tudelad. Å ena sidan ger tekniken upphov till komplexa och svårbedömda, ofta diffusa, risker. Å andra sidan ger avancerad teknik fler möjligheter att kontrollera och hantera risker i tid och rum. I detta avsnitt fokuseras på den senare aspekten.

Fjärranalys är ett samlingsnamn för olika tekniska metoder som på avstånd kan samla in, bearbeta och presentera data om land, miljö, vatten och atmosfär (Swedish National Space Board, http://nos.snsb.se/FAK/jordobs.html 1999-10-11). För detta används en form av sensor, radar, ekolod, sonar m.m., som analyserar signaler från det studerade objektet. Sensorn kan vara placerad på ballonger, flygplan och satelliter etc.

Figur 10.1 Olika tillvägagångssätt vid riskhantering
Källa: Beroggi & Wallace 1998

20 Monitoring
Integrierad regional riskbedömning och riskhantering

Ett område där operativ riskhantering håller på att slå igenom är vid transporter av farligt gods. Strategisk planering för val av lämpliga vägar för transport med farligt gods påbörjades för flera decennier sedan. De senaste åren har emellertid även fördelarna med operativ riskhantering börjat uppmärksammas då man alltmer insett att strategisk planering kräver att mängder med information måste samlas in vilket är tidsödande. Ett annat skäl är att avancerad teknik blivit allt mer (kostnadsmässigt) tillgänglig men också så pass flexibel och användarvänlig att det inte krävs flera års specialutbildning för att kunna bruka den.

Tekniska hjälpmedel som GPS (Global Positioning System) möjliggör lägesbestämning med en noggrannhet på en meter\(^\text{21}\). Detta innebär stora skillnader mot tidigare vad avser övervakning av t ex mobila transporter. Med hjälp av givare som fästs på de fordon som övervakas kan deras förflyttningar i rummet studeras i realtid vilket gör att en operator vid en arbetstation på långt avstånd kan ha uppsikt över fordonens position, och dirigera och styra dem vid behov (se figur 10.2).

Miljön för operativ hantering av transporter i realtid består av tre element:
1. En operatör som övervakar systemet och som guidar fordonen vid incidenter i realtid. Till sin hjälp har övervakaren verktyg och medarbetare på fältet samt beslutsmodeller.
2. Ett transportsystem bestående av nätverk, fordon och omgivande miljö.

De beslutsmodeller som skall stötta övervakaren med att rekommendera vägval bör kunna:
1) Identifiera områden som kan beröras i nätverket.
2) Bedöma påverkan.
3) Identifiera berörda fordon.
4) Ta beslut om ändringar av vägval för den berörda transporten.

\[21\] I geodetiska sammanhang är noggrannheten några millimeter (Bra Böcker 1994). I Europa finns även alternativet EutelTracs med syfte att positionsbestämma mobila objekt.
Figur 10.2 visar ett exempel på en övervakningsskärm i ett beslutsstödssystem i GIS-miljö där syftet är att fatta beslut vid transport av farligt gods. Genom att peka på olika objekt, t ex för don i rörelse, på skärmen är det möjligt att erhålla olika sorts information. Systemet ger information om realtidsincidenter inträffar, samtidigt som det är möjligt att få förslag på nya vägalternativ enligt olika kriterier.

Tabell 10.1 Applikationer för olika tekniker
Källa: Beroggi 1996

<table>
<thead>
<tr>
<th>Verktyg</th>
<th>Betyder</th>
<th>applicationer</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAT</td>
<td>Beslutsstödjande tekniker</td>
<td>analys av olycksfall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>anpassningsbara kontrollsystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>policyanalyser</td>
</tr>
<tr>
<td>ASS</td>
<td>Animerade simulationssystem</td>
<td>dynamisk modellerande</td>
</tr>
<tr>
<td></td>
<td></td>
<td>numeriskt beräknande</td>
</tr>
<tr>
<td>GIS</td>
<td>Geografiska informationssystem</td>
<td>rumsligt beslutsfattande</td>
</tr>
<tr>
<td></td>
<td></td>
<td>riskanalys</td>
</tr>
<tr>
<td>HMS</td>
<td>Hyper och multimediasystem</td>
<td>akutåtgärder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>riskanalyser</td>
</tr>
<tr>
<td>VRT</td>
<td>Virtuella reality teknologi</td>
<td>genererar scenarier</td>
</tr>
<tr>
<td></td>
<td></td>
<td>teleoperationer, telenärvaro</td>
</tr>
<tr>
<td>TCS</td>
<td>Telekommunikationsservice</td>
<td>videokonferenser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>elektroniska mail</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tillgång till avlägsna databaser</td>
</tr>
<tr>
<td>STS</td>
<td>Satellitspårsystem</td>
<td>övervakning och kontroll</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transporthantering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spårning av farliga ämnen</td>
</tr>
<tr>
<td>EGS</td>
<td>Elektroniska gruppsystem</td>
<td>brainstorming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>förhandling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>konfliktlösningar</td>
</tr>
</tbody>
</table>
Del III

IRRASM –
Översikt över några praktiska ansatser och miljöer
11 IRRASM-ansatser i praktiken

11.1 Inledning
I detta avsnitt redogörs för några konkreta fall där en integrativ och rumslig ansats använts. Liksom i följande avsnitt 12 och 13 kan det konstateras att det inte är möjligt att redovisa allt som åstadkommts. Istället ges här endast några exempel på vad som försiggår eller har gjorts inom några områden. Det är tydligt av exemplen nedan att integrativa bedömningsmetoder utvecklats inom framför allt två områden, spridningsmodeller och att försöka integrera många olika aktörer för att bedöma risksituationer i rummet.

11.2 Praktiska ansatser till integrerade studier byggda på spridningsmodeller
Som tidigare fastställdes utgör utsläpp av skadliga ämnen betydande risker mot miljö och hälsa i det industrialiserade samhället. För att bedöma hälsoförmåga eller risker mot ekosystem från kontinuerliga eller olycksmässiga utsläpp används olika spridningsmodeller.

Flera försök görs för att integrera en allt högre komplexitet i dessa modeller. I bilaga 5 redovisas några exempel på modeller och metoder för att analysera, värdera och åtgärda olika typer av utsläpp och där man försöker att bredda angreppssättet, rumsligt och/eller integrativt. Det som skiljer de olika modellerna/metoderna åt är bl a i vilken mån de beaktar de faktorer som påverkar spridningen och hur de integrerar tidsmässiga och rumsliga och icke-rumsliga aspekter. Som tidigare påpekats skiljer sig också bedömningarna åt beroende på om de fokuserar på olycksrisken eller risker från kontinuerliga utsläpp.

11.2.1 Spridningsmodeller och beslutsstödjande system – fallstudier
Integrerad regional riskbedömning och riskhantering

Nästa steg som togs i G/WEBP-projektet bestod i att utveckla ett SDSS för att bedöma huruvida tilltänkta anläggningsområden utgjorde riskkällor. Stor vikt lades här vid samspelet mellan risk och jämlikhet, d v s en jäm distribution av riskerna eftersträvades. På så vis försökte man undvika att förvärra situationen i redan utsatta områden. Det jämlikhetsmått som användes var ett index som baserades på information om buller, luftföroreningar och risker för industriolyckor och preciseras för varje delområde i samhället. Ändamålet var dels att minimera exponeringen av befolkningen i stort för farliga ämnen men också reducera utsattheten hos den mest särbara populationen (äldre och barn under 5 år).

I en tredje fas försökte man bedöma den miljömässiga belastningen i varje delområde utifrån olika aspekter som t ex buller och dålig luft. Ett GPA integrerades härmed med det GIS som utvecklats i projektet och användes för att bestämma inverkan av utsläpp till luft. En intressant slutsats som kunde dras var att i ett så ojämnt belastat område som Greenpoint/Williamsburg skulle ett större antal mindre anläggningar endast förstärka den existerande ojämlikheten jämfört med om man skulle uppföra färre men större anläggningar.

11.2.2 Transport av farligt gods – konventionell riskanalys

IAEA (1998) menar att tre huvudelement är särskilt viktiga att beakta vid sådana riskberäkningar:
1. Miljö och markanvändning. I detta ingår identifikation och kvantifiering av risker mot människor, egendom och miljö
2. Nätverkets kapacitet och kummulativa följer. Med detta avses övergripande trafikrörelser, trafikstockningar och servicenivåer på potentiella vägar, olyckstal, vägförhållanden etc.

En integrativ riskbedömning av en sträcka eller ett försök att utforma alternativa vägar för transport av farligt gods förutsätter en kvantifiering och viktning av de tre elementen. För att kunna uppskatta konsekvenserna av olyckor med transport av farligt gods krävs data om egenskaperna hos det ämne som transporterats, transportsättet, lagrings- och transportvillkor, lastens kvantitet, topografi, markanvändning och befolkningsdensitet. Uppskattning av sannolikhet för att olycka skall inträffa kan utföras i följande steg:
1. Fastställ olycksförhållanden på den berörda vägsträckan.
2. Beräkna sannolikheten för att en olycka skall ske med hänsyn till fordonen på vägsträckan.
3. Resultatet i steg två multipliceras med en olycksfaktor för farligt gods (d v s steg 2 * antal farligt gods-transporter / alla olyckor med transportfordon).

22 Referensen redovisar inte närmare hur detta index konstruerats
För att beräkna transportrisken multipliceras den potentiella konsekvensen med sannolikheten för att en olycka skall uppstå för varje segment av vägen. Det är därefter nödvändigt att räkna om sannolikheten för att en olycka skall inträffa till en sannolikhet för att påverkan skall ske, d v s kommer det utspillda materialet att nå ett känsligt område? Detta kan göras med hjälp av händelseträd (se bl a avsnitt 2).

De faktorer som påverkar beslut om vägval ur ett miljösäkerhetsperspektiv kan sammanfattas i kategorierna:
- Juridiska och fysiska begränsningar.
- Risker mot miljö och markanvändning. I detta inkluderas identifikation av riskkällor och kvantifiering av risker.
- Subjektiva faktorer som speglar samhällets prioriteringar och värden som inte så lätt kan kvantifieras. Det kan t ex gälla en önskan om att försöka undvika att dra transportvägar i närheten av skolor, sjukhus etc.

11.2.3 Transport av farligt gods – Hot Spots
Gheorghe m fl (1999) forskar i en alternativ metod för att beräkna risker i transportsystem där större hänsyn tas till rumsliga förhållanden än vad som är brukligt. Syftet är att åskådliggöra s k hot spots. Hot spots kan definieras som områden där sannolikheten är hög för att en olycka

Figur 11.1 Exempel på ett tillvägagångssättet vid bedömning av transportrisker
Källa: IAEA m fl 1998
Integrerad regional riskbedömning och riskhantering

skall ske och där konsekvenserna kan bli allvarliga. Detta innebär en selektiv beräkning av sannolikhet och konsekvens.

Metodiken för att komma fram till hot spots består i att tillämpa en särskild uppsättning regler och en GIS-baserad miljö i kombination med så kallade känsliga områden (floder, grundvatten befolkade områden etc). Reglerna baseras på olycksanalyser och en undersökning av underliggande skäl och transportproceduren. I ett beslutsstödande system (DSS) kombineras reglerna (i form av ett lager) med övriga lager av relevant information. Det beslutsstödande systemet används för att bedöma det rumsliga och tidsmässiga mönstret av ett utsläpp från en eller flera källor. Innehållet i DSS-strukturen inkluderar:

- Optimerings- och simuleringsmodeller.
- Geografisk representation av data, information, kunskap och resultat i GIS-miljö.
- Hypertextkunskap och informationsbehandling.
- Rangordningsprocedurer för olika vägval och val av hanteringsstrategier.

11.2.4 ARIPAR-projektet

- Prioritera åtgärder för att reducera konsekvenserna vid en olycka.
- Ta hänsyn till riskerna i den urbana fysiska planeringen.
- Planera för förbättringar i transportinfrastrukturen.
- Utvärdera kompatibiliteten mellan ny utveckling av industrin i förhållande till den befintliga markanvändningen.

I projektet inbjöds alla berörda parter (industrin, kommersiella organisationer, myndigheter och delar av allmänheten) som kan tänkas ha ett intresse att övervaka och delta i processen. I ett första steg inventerades riskkällorna i regionen. Två områden definierades, ett med riskkällor och ett där påverkan kunde ske. Data om befolkning, turistströmmar, sårbara punkter och tillgänglig infrastruktur vid en eventuell olycka samlades in. I steg två identifierades och rangordnades potentiella olycksscenarier för varje riskkälla med hänsyn till det bidrag till den samlade risken i området som de utgjorde. För de fasta riskkällorna togs hänsyn till att eventuella dominoeffekter kunde inträffa.

De initiierande händelserna ansågs kunna vara såväl interna som externa. Sålunda är kopplingarna till sårbarhetsanalysens omfattning starka. För olycksscenarierna med transport av farligt gods togs hänsyn till trafikintensiteten langs olika vägsträckor. De riskmått som användes

23 Den metodik som använts i projektet har även mynnat ut i en Area Risk Reassembling Module vilket är ett beslutsstödande system för utvecklingen i området (och andra liknande regioner).
Praktiska IRRASM-ansatser

(indikatorer för arearisken) var bl a individuell risk och F/N-kurvor. I figur 11.2 åskådliggörs schematiskt det tillvägagångssätt enligt vilket riskerna i projektet bedömdes.

11.2.5 XENVIS

Flera olika varianter av spridningsmodeller redovisas i bilaga 5. En modell som framträder är emellertid XENVIS. XENVIS är resultatet av ett samarbetsprojekt som påbörjades redan 1986 mellan VROM, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer (Ministry of Housing, Spatial Planning and the Environment) och RIVM, Rijksinstituut voor Volksgezondheid en Milieu (National Institute of Public Health and the Environment), i Holland och det österrikiska företaget Environmental Software and Services GmbH i syfte att göra interaktiva riskbedömningar av transporter med klor i Holland (Fedra 1997). Det har idag utvecklats till ett interaktivt miljömässigt informations- och beslutsstödssystem (SDSS) som kan tillämpas i en mängd sammanhang med industriella teknologiska risker och hante-ring av farlig verksamhet och skadliga ämnen. XENVIS är en avancerad spridningsmodell
Integrerad regional riskbedömning och riskhantering

...som integrerar geografisk information på olika rumsliga nivåer med flera sammanlänkade databaser (speciellt farliga ämnen och industriella anläggningar) med en hypertextstruktur.

11.2.6 Produktsyn istället för productionssyn

temet till den totala påverkan? Resultatet av frågorna används som underlag för att visa miljömässig påverkan för olika effektkategorier (klimatförändringar, ozonuttunning etc). En sortering görs för att skilja mellan de aktiviteter som bidrar till skada och de som inte gör det.

11.2.7 Strategiska helhetsmässiga metoder

Strategic Risk Assessment, SRA (Llewellyn 1998), är ett försök att integrera alla aspekter som kan karakteriseras som intressanta vid en riskbedömning för att kunna prioritera åtgärder.

Metodiken strävar efter att bredda beslutsprocedurer som innefattar riskhänsyn och ekonomiska värderingar och som resulterar i miljömässiga konsekvenser. SRA-metodiken är uppbyggd på fyra steg och utgör en enkel och transparent handledning. Nedan redogörs för de olika stegen:

1. I det första steget, skadebedömning (jämför riskbedömning figur 3.1), bestäms inverkan av en given exponeringsnivå på en specifik receptorgrupp och normaliseras mot ett riktvärde (gränsvärde). Mer konkret:
 • Kvantifieras riskkällorna.
 • Kvantifieras exponeringen från källorna.
 • Uppställs bedömningskriterier.
 • Bedöms skadan i förhållande till bedömningskriterierna.

2. I steg två, risksignifikans, gäller det att relatera den inverkan som identifierades i steg 1 och sätta in denna i en tidsrumslig kontext. Hänvis till:
 • Den rumsliga omfattningen av den förväntade skadan.
 • Den tid över vilken skadan kan förväntas.
 • Den tid över vilken den exponerade befolkningen kan återhämta sig på ett naturligt sätt.
 • Vilka andra utsatta subjekt/objekt som kan beröras.

3. I det tredje steg, riskosäkerhet, kvantifieras sannolikheten för att händelsen skall inträffa, men också den osäkerhet som genomsyrar bedömningarna. Genom att försöka reduce-
 ra osäkerheten till en "tolerabel nivå" eftersträvas att göra bedömningen trovärdigare. I bedömning av osäkerhet ingår att ta hänsyn till:
 • Sannolikheten att riskkällan skall leda till den förväntade skadan.
Integrerad regional riskbedömning och riskhantering

- Den inneboende variabiliteten i miljön.
- Bristen på kunskap av den miljömässiga inverkan som vissa riskkällor utgör.
- Inadekvata data och/eller information beträffande riskscenariot i fråga.

4. I sista steget görs en totalbedömning m h a en riskekvation i vilken värden från tidigare steg infogas och viktas. Ekvationens värde representerar risken ur ett brett perspektiv där perception, kostnader för samhälle och miljö och politiska och vetenskapliga uppfattningar ingår. Värdet utgör sedan grunden för en riskprioritering då den jämförs med en intervallskala som beskriver riskens betydelse. Hänsyn tas till:
 - Kostnaderna för industrin eller samhället för att förhindra riskerna för miljömässiga skador.
 - De miljömässiga kostnaderna för att tillåta att skada får ske.
 - Allmänhetens uppfattning om risker, inverkan och kostnader.
 - Den politiska risksynen, inverkan och kostnader.
 - Den vetenskapliga synen på risker och påverkan.

Llewellyns slutliga bedömning av risken är i form av en prioriteringspoäng som grundar sig på de fyra stegen och kan uttryckas i en formel:

\[\text{Riskprioritering} = (a \times \text{skada}) \times (b \times \text{risksignifikans}) \times (c \times \text{osäkerhet}) \times (d \times \text{riskens vikt}) \]

a, b, c och d är vikter som bestämns av användaren. Riskprioriteringspoängen jämförs med en skala som på ett enkelt sätt visar vilken prioritet risken har för att åtgärdas. Modellen håller för närvarande på att utvärderas i England.

11.3 Metoder för att integrera flera olika aktörers åsikter

I föreliggande rapport har ett antal praktiska ansatser där man strävar efter att integrera flera aktörer i en beslutsprocess undersökt. Det är möjligt att urskilja två huvudgrenar. Å ena sidan finns det metoder som m h a diskussionstekniker försöker nå konsensus bland flera intressenter för ett beslut som kan påverka riskbildningen i rummet. Å andra sidan har det utvecklats flera verktyg där GIS, multikriteriemetoder och rumsligt beslutsstödjande system integrerats och gjorts åtkomliga för allmänheten genom datornätverk som Internet. Vi börjar nedan med att se närmare på de teknikbaserade systemen för att därefter undersöka de metoder som bygger på diskussionstekniker.

11.3.1 GIS, MCA och SDSS i nätverk, några exempel på fungerande riskverktyg

I ett samarbete mellan The Joint Research Centre, JRC, ISPRA Italien och Leeds University (Carver 1999) har en metod utvecklats för att kommunicera frågorna kring fysisk planering med allmänheten genom att göra tillgängligt ett GIS/MCDM-system via Internet. Systemet i sig själv håller information från nätet vilket innebär ett stort, och ständig ökande antal, inputmöjligheter av georefererad information (t ex befolkningsdensitet, skyddsavstånd etc). Resultatet är kartor över regionen där flera kriterier använts som underlag för att beräkna lämpliga avstånd mellan olika verksamheter. Användaren kan med utgångspunkt i dessa kartor och systemet identifiera de mest lämpliga områdena för en viss verksamhet.

En annan produkt från JRC är en multikriteriemetod, Novell Approach to Imprecise Assessment and Decision Environment, NAIADE, med syfte att analysera och utvärdera konflikter
och möjliga koalitioner mellan olika intressegrupper. I det inlärningsprogram som är tillgängligt kan användaren testa metoden i en fallstudie. Möjlighet ges även för användaren att, för varje alternativt scenario, variera värdena för kriterierna, specificera preferenser för olika intressegrupper och analysera de möjliga utfallen.

Integrated Planning Decision Support System, IPDSS, är ett beslutsstödande verktyg sammanbyggt med GIS för att hjälpa till med att bedöma sårbarheten i ett samhälle och där målet är att försöka reducera riskerna (Colorado State University,
Integrerad regional riskbedömning och riskhantering

11.3.2 Diskussionsbaserade tekniker för att integrera flera aktörer i besluten
I det här avsnittet visas på några försök som har gjorts för att integrera aktörernas olika intressen i risklandskapet utan tekniska hjälpmedel såsom GIS i kombination med MCDM och SDSS.

Flera författare rekommenderar diskussionsforum som ett sätt att ta tillvara olika åsikter. Skillnaden mot att t ex skicka ut enkäter är att deltagarna på ett möte lär sig av varandra att se saker ur flera perspektiv. Renn (1998) föreslår en modell, Cooperative discourse, för medborgardeltagande vilket kan sammanfattas i tre steg:
1. Identifiera och välj intressen och värderingskriterier. Alla som har ett intresse i en aktuell fråga skall intervjuas om vilka värderingar och kriterier som har betydelse för deras bedömningar av olika val.

Figur 11.4 Bild ur programmet AR/GIS-smart places som visar de modeller som kan användas för en uppgift. Programmet är flexibelt och låter användaren välja de modeller som han finner tillräckligt för att fatta ett beslut i en specifik situation.
Källa: Colorado State University http://www.ids.colostate.edu (2000-02-18)
3. Utför en diskurs med slumpmässigt valda medborgare som jurymedlemmar och represen-
tation av intressegrupper som vittnen.

Renn menar att såväl experter som allmänheten i en sådan process bör uppmanas att påverka
beslutsprocessen med den kunskap de bär på. Renn har funnit att denna metod är mycket
framgångsrik för att lösa konflikter och uppnå konsensus för lösningar.

Konfliktanalysen är en metod som strävar efter att i planarbetet belysa och bearbeta de olik-
heter som existerar beträffande åsikter och värderingar av f ex risker. Analysen bör inledas i
ett tidigt skede och redovisa känsliga områden och verksamheter, identifiera intressenter och
aktörer samt redovisa ståndpunkter/intentioner. Arbetet kan fördjupas och konkretiseras då
planarbetet går från översiktsstadium till detaljplanering. Intressenterna bör komma till tals
med varandra flera gånger under planarbetets gång vilket är speciellt angeläget om syftet f ex
är att upprätta en miljökonsekvensbeskrivning.

Konfliktanalysens fördelar är att den erbjuder en struktur för arbetet vilket innebär att idéer
och synpunkter inte riskerar att gå förlorade. Analysen ställer viktiga frågor som kan samman-
fattas i tre punkter:
1. Vad är problemet? Varför är det ett problem?
3. När, var, hur och med vilka metoder kan konflikten lösas?

En annan beslutsstödande metod som påminner om konfliktanalysen och som strävar efter
att lösa komplexa problem är Decision conferencing (Gheorghe 1995). Här handlar det om att
samlar alla med anknytning till ett problem i en given region till ett möte i syfte att genom dis-
kussioner försöka komma fram till en gemensam strategi för att hantera riskerna i regionen.
En beslutsanalytiker och en moderator stödjer processen. Moderatörn har goda kunskaper om
grupparbete och försöker leda diskussionen framåt medan analytikern med utgångspunkt i
diskussionen bygger beslutsstödande modeller m h a informationsteknologi. Poängen med
konferensen är att få alla berörda att engagera sig och verka för en gemensam strategi som
integrerar subjektiva och objektiva synpunkter som alla slutligen stödjer.
12 Internationella utvecklingsläget för IRRASM

12.1 Exempel på miljöer där integrativ regional riskhantering initierats och tillämpas

- Metoder för kvantifiering av risker.
- Attityden hos människor som berörs av potentiellt farliga aktiviteter.
- Handläggningen av dessa faktorer i beslutsprocessen.

Schweiz ligger långt framme vad beträffar forskningen kring risker ur ett regionalt perspektiv. Befolkningens misstro mot säkerhetsaspekterna i nya projekt blev med tiden så stor att en bred risksyn mer eller mindre tvingats fram (Nicolet-Monnier 1996). Cantonerna har numera ålagts uppgiften att, m h a ett GIS och hypertextbaserat system, sammanställa information om risker i landskapet enligt ett IRRASM-angreppssätt. En federal kommitté har upprättats för att koordinera de olika cantonernas förberedelser för katastrofer, etablera grunderna för ett europeiskt samarbete, utbyta teknisk information, koordinera forskningsprojekt, definiera regler och harmoniera räddningsinsatser med andra länder.

Schweiz var också en drivande kraft bakom samarbetsprojektet Polyproject on Risk and Safety of Technical Systems. Projektet var multinationellt och föranlett i flera forskningsmiljöer från främst Schweiz men också Holland och Tyskland. Huvudmålet med projektet var, som tidigare redogjorts för, att utveckla tvärdisciplinära praktiska metoder för att hantera risker
Integrerad regional riskbedömning och riskhantering

från ett större antal teknologiska system. Andra målsättningar var bl a att etablera kunskaper
och samarbete om olika typer av risker och utveckla internationella kontakter. En fallstudie,
"Limmattal", genomfördes också för att testa utvecklade applikationer för riskminimering.

I Österrike utvecklar och implementerar forskningsföretaget Environmental Software and
Services GmbH kontinuerligt integrerade miljöinriktade GIS-system och modellbaserade be-
slutsstödjande system (Environmental Software and Services GmbH, http://www.ess.co.at
1999-08-16). Företaget har utvecklat program som: XENVIS, GRIBS och HITERM (se
11.2.5 ovan och bilaga 5)

Bruket av sårbarhetsanalyser kan bl a observeras i Norge, Sverige, Island och USA. I USA har
man kanske främst uppmärksamt sårbarheten i samhället vad avser sabotage och företags-
värtenskapliga s k ROS-programmet (Risiko- och sårbarhetsforskning) i regi av Norges forsk-
Avsikten var att med hjälp av tvärvetenskapligt sammansatta grupper utveckla metoder för att
genomföra risk- och sårbarhetsanalys av hälsa, miljö och säkerhet på ett effektivt sätt. Målet
var att skapa en gemensam plattform för säkerhetsarbete i vid bemärkelse. Programmet resul-
terade i att generella verktyg, handböcker och checklista för bedömning av risker mot hälsa,
miljö och säkerhet inom en mängd verksamheter och situationer (industri, kommuner etc)
utvecklades. Direktoratet för sivilt beredskap, DSB, strävar efter att alla kommuner i Norge

Försäkrings- och klassificeringsföretaget Det Norske Veritas, DNV, som arbetar mycket med
certifierings- och säkerhetsfrågor bör också nämnas i sammanhanget. Man har deltagit i ROS-
projektet och även arbetat med att systematisera skadeförebyggande åtgärder i olika industri-
verksamheter (DNV 1995) samt utvecklat mjukvara för riskanalyser. DNV ägnar också en hel
del resurser åt miljöbedömning och har bl a utvecklat spridningsmodeller som försöker ta
hänsyn till en mängd faktorer som är avgörande för spridningsmönstret och inverkan på

Inom EU pågår ett arbete för att begränsa allvarliga olycksrisker med explosiva och giftiga
ämnen. EU:s ministerråd har antagit det så kallade Seveso II-direktivet i vilket artikel 12
tidsperspektiv och att ta hänsyn till alla väsentliga kriterier så att en olycka inte ökar riskerna
för hälsa och känsliga naturområden.

I det här avsnittet har olika IRRASM-ansatser mycket kort utvecklats i ett internationellt per-
spektiv. I avsnittet nedan åskådligt försöker författaren berätta hur olyckor i olika
samtällda. Översikten omfattar vad som har gjorts de senaste åren eller vad som pågår för närva-
rande.
13 Översikt över analysläget för IRRASM i Sverige med inriktning på det robusta samhället

13.1 Miljöer och projekt

13.1.1 Överstyrelsen för Civil Beredskap

ÖCB har under en längre tid studerat hur svåra påfrestningar påverkar samhället i fredstid, ofta i samarbetsprojekt med andra myndigheter eller högskolor och universitet. I fokus för intresset står situationer som karaktäriseras av att de avviker från det som betraktas som normalt, uppstår hastigt, mer eller mindre oväntat, hotar grundläggande värden och kräver snabba beslut och koordinerad och koncentrerad insats av flera instanser (ÖCB, http://www.ocb.se 2000-02-09).

Arbetet Beredskaphänsyn i planering och samhällsutveckling, BIS, har pågått under flera år och har till syfte att göra samhället mer robust och mindre känsligt för situationer som avviker från det normala tillståndet. I detta arbete är det viktigt att tänka på risker och hot i ett tidigt skede av ett projekt och genomföra väl genomtänkta riskanalyser. Nyckelord man valt att ta hänsyn till är lokaliserings, utformning, utrustning och organisation.

ÖCB har på sin hemsida (http://www.ocb.se) listat alla projekt som man initierat och vem man samarbetar med. En del av dessa redovisas även nedan.
13.1.2 Försvarets forskningsanstalt

Forskningsinom Försvarets forskningsanstalt, FOA, har flera beröringspunkter med IR-RASM. Tidigare har redogjorts för framställningen av indikatorer för att mäta robusthet i bostadsområden och grannskap (se avsnitt 5.1.3). FOA bedriver också forskning tillsammans med olika högskolor (se t ex avsnitt 13.1.3) och ÖCB.

13.1.3 Svenska kommunförbundet

Internt skydd avser säkerheten för kommunens egendom och verksamhet, exempelvis brand, inbrott och skadegörelse, vattenskador, överfall och olycksrisker, datasäkerhet, sekretess- och säkerhetskyddsfrågor.

Skydd mot olyckor inbegriper olyckor vid transporter av farligt gods, rasolyckor, farliga utsläpp, avbrott i el- och vattenförsörjning eller andra svåra påfrestningar. Från Kommunförbundets sida hävdar man att kommunens ledning- och informationsberedskap såväl som den kommunala räddningstjänsten har en mycket stor betydelse i dessa sammanhang.

Civilt försvar omfattar kommunernas roll i totalförsvar och inbegriper beredskapsförbere-delser inom de flesta samhällsområden. Civilt försvar kan sägas vara en förlängning av de två föregående delarna.
13.1.4 Tekniska högskolor och Universitet
Vid KTH, Center for Safety Research (tillsammans med FOA, Tyréns), undersöks sårbarheten i den tekniska infrastrukturen på en konceptuell nivå. Syftet är att studera den tekniska infrastrukturens funktionsförmåga och sårbarhet i förhållande till aktuella och framtida, externa hot. Vidare studeras närmare systemsamverkan, organisationsformer, teknikutveckling m.m. Man begränsar sig till att endast behandla försörjning av el, värme, vatten, avlopp och informationsteknik med anknytning härrit. Genom att utföra fallstudier förväntar man sig kunna påvisa behov av var det är angeläget att genomföra regionala och lokala insatser.

Vid KTH utförs också ett närbesläktat projekt vars syfte är att studera sårbarhet i olika avseenden i det svenska vägtransportsystemet. Ett åtagande i detta projekt är att utveckla mått för att karakterisera sårbarhet och att utveckla en metodik som reducerar de problem som finns här. Ambitionen är också att utveckla metoder för att värdera nyttan av olika åtgärder som existerar för att minska sårbarheten. Faktorer som undersöks i samband härmed berör värdering av tid och osäkerhet kring rese- och transportkostnader.

13.1.5 Naturvårdsverket

I diagrammet görs markeringar med avseende på de för området förekommande skadliga ämnena. Spridningsförutsättningarna för de olika ”medierna” betecknas med horisontella linjer. Områdets riskklass avgörs av var majoriteten av punkterna hamnar. Bedömningen av farlighet, föroreningskänslighet etc grundas bl a på Kemikalieinspektionens föreskrifter.

Metodiken har bl a använts vid en undersökning av äldre industri- och verksamhetsområden i Malmö.

13.1.6 Räddningsverket

Figur 13.1 Diagram för att klassificera riskerna från skadliga ämnena i förorenade markare. Källa: http://www.miljo.malmo.se/mark.htm 1999-12-15

För närvarande utvecklar Räddningsverket ett verktyg för riskhantering, RISKERA. Det är tänkt att bli ett lättanvänt beslutsstödande verktyg för kommunal riskhantering med möjlighet att importera och bearbeta statistik från kommunala databaser (jm avsnitt 13.1.6). Verktyget skall kunna presentera flera typer av geografisk information som behövs för beslutsfattande inom riskhantering. Sådan information kan bestå i riskobjekt, skyddsobjekt, olycksstatistik,
13.1.7 Boverket
Risk- och brandgruppen inom Boverket har till uppgift att producera byggregler, råd etc vars syfte är att förebygga skador som uppstår i samhållet till följd av bränder, och som kan relatera till risker för människors liv och hälsa i byggnader och byggnadsverk (Boverket, http://www.boverket.se/bygg/risbrand.htm 2000-02-27). Man deltar också aktivt i den nationella samverkansgruppen för skadepreventiva åtgärder, SAMS. SAMS har kommit till på Folkhälsoinstitutets initiativ och eftersträvar att reducera skaderiskerna i samhället genom att olika myndigheter samverkar.

13.1.8 Riskstatistik
En integrativ riskansats kräver tillgång till flera typer av statistik och data sammankopplade i relationsdatabaser. Idag finns mycket riskrelevanta statistik sammanställd i olika databaser som ägs av enskilda myndigheter, forskningsinstitutioner och företag. En stor del av denna information är numera också tillgänglig för allmänheten och externa forskare. Ett problem är emellertid att den är utspridd på flera olika innehavare vilket gör insamlingsproceduren tidskrävande. Ett ytterligare problem är att statistiken behandlas på olika sätt vilket gör sammanställningen från flera källor komplicerad.

Avsikten med projektet RISKDATA är att skapa mekanismer för att beskriva data genom en företeelsses hela livscykel utan att man är beroende av ett specifikt informationssystem. Målet
 Integrerad regional riskbedömning och riskhantering

är att komma fram till en lösning på hur en relationsdatabas skall struktureras så att den är kompatibel med andra databaser på lokal och regional nivå. Poängen är att få olika datatyper att fungera tillsammans utan att de ständigt behöver omarbetas. På så sätt är det möjligt att hela tiden få tillgång till uppdaterad information från källan. För att det hela skall fungera upprättas en struktur som är gemensam för alla inblandade parter.

Del IV

Avslutning
Integrerad regional riskbedömning och riskhantering
14 Slutsatser, frågeställningar och angelägna forskningsprojekt

14.1 Diskussion

I rapporten har vi försökt ge en överblick över den rådande situationen och utvecklingsläget vad beträffar integrerad regional riskhantering i allmänhet och IRRASM i synnerhet. Att genomföra riskbedömningar med avseende på hälsa, miljö eller säkerhet i samhället är inget nytt. Sådana undersökningar har förekommit länge men de har varit baserade på objektet och sällan eftersträvat att göra en helhetsmässig bedömning. Att istället utgå från rummet innebär att förutsättningarna för att åstadkomma en mer samlad och uttömmande riskbild förbättras avsevärt.

Orsaken till att en samlad riskbild blivit alltmer angelägen är att samhällets komplexitet ökat och, delvis som en följd av detta, blivit alltmer sårbart för olika inre och yttre störningar. De senaste åren, i bl a Sverige, tankarna på ett mindre sårbart, och istället mer robust och resilient samhälle, vunnit fotfäste i planprocessen. Detta innebär att en helhetssyn/systemsyn anläggs på samhället och dess funktioner. Ur den synvinkeln ter sig det angreppssätt som IRRASM förespråkar högst angeläget.

Det kan tyckas vara en begränsning att begreppet IRRASM endast diskuteras i ett sammanhang där riskkällan består i utsläpp av skadliga ämnen från en fast anläggning. Resonemanget torde emellertid gå att tillämpa i ett bredare perspektiv och för andra typer risker i samhället. Ett antal metoder, modeller och verktyg som skulle kunna ingå i en integrativ studie för en region har undersömts i rapporten. Vår utgångspunkt har varit att göra denna ”inventering” med avseende på metoder som fokuserar på sårbarhetsaspekterna i stort i samhället, d v s inte endast utsläpp. De metoder och verktyg vi tror är av stor relevans för en IRRASM-studie under sådana förutsättningar är främst

- Sårbarhetsanalyser
- Beslutsmetoder baserade på multikriteriemetoder och/eller i kombination med
- GIS för att åskådliggöra och beräkna risker

Gemensamt för sårbarhetsanalyserna är att de utvecklar en systemsyn vilket innebär att de inte endast ser till interna faktorer utan också till de externa faktorer som har betydelse för systemets möjligheter att klara av svåra påfrestningar.
Integrerad regional riskbedömning och riskhantering

Multikriteriebaserade beslutsmetoder kan användas i en mängd sammanhang där det är ange-
läget att göra avvägningar mellan olika parametrar i ett komplext och mångfacetterat problem. Multikriteriemetoder har en lång historia inom fysisk planering men det är först i och med den allmänna utbredningen av, och integrationen med, datorer som kan utföra snabba beräkningar och åskådliggöra risksituationer på skärm (GIS) som de har blivit praktiskt användbara för vardagliga problem och för att integrera allmänhetens åsikter i samhällets planeringsverksam-
het, särskilt i samband med att beslutsstödande system som, Spatial Decision Support Sys-
tems, SDSS kan utnyttjas.

En annan aspekt som är viktig att beakta vad beträffar risker i ett helhemsmäßigts perspektiv är spännvidden mellan det tekniska och det beteendeinriktade perspektivet. Det är tydligt att den dominerande tekniska definitionen inte är tillräckligt nyanserad för att täcka in alla aspekter som begreppet risk kan tänkas rymma. Detta enkla problem är viktigt att beakta då det i för-
längningen torde vara en avgörande faktor för hur en riskbedömning bör/skall utformas och/eller utföras och hur resultatet tolkas. Ett utslag av att den tekniska definitionen oftast ligger till grund för undersökningar idag är att allmänhetens förtroende för undersökningsre-
sultatet tenderar att bli lågt. Problemet är viktig att arbeta med eftersom det på många sätt avgör trygghetskänslan i samhället samt möjligheten att genomföra större samhällsnyttiga projekt. En av de stora fördelarna med multikriteriemetoder är just att de har förmågan att införliva subjektiva och kvalitativa egenskaper för att bedöma de aktuella riskerna. Använda-
en kan göra avvägningar mellan vad han/hon anser vara en stor eller liten risk och vilken betydelse t ex hälsorisker har för honom/henne relativt miljörisker.

Att genomföra integrativa och regionala riskstudier innebär att man är tvungen att handskas med stora frågor och problem. Enorma datamängder skall behandlas, effekterna av tid och rum försöka reduceras, problemen måste kunna ställas upp överskådligt, etc. En förutsättning för att övervinna dessa svårigheter är förekomsten av teknologiska hjälpmedel. IT, GIS, GPS, fjärranalysverktyg är kanske de viktigaste redskapen men det finns flera andra. Tillgängli-
heten till dessa verktyg och deras kapacitet och användarvänlighet har ökat drastiskt bara un-
der 1990-talet. Datorn har mer eller mindre blivit var mans egendom, i alla fall i västvälden. Den tekniska utvecklingen har varit av avgörande betydelse för att kunna bedöma och hantera risker på ett integrativt sätt och mer eller mindre oberoende av tid och rum (bl a vad beträffar operativ riskhantering).

Ser man till vilka områden där man idag mer praktisk använder sig av ett integrativt och regi-
onalt tillvägagångssätt för att bedöma risker kan framför allt två grenar urskiljas:
1. Spridningsmodeller
2. Metoder att integrera flera olika aktörer i beslut som berör risker.

Den regionala dimensionen är på förhand given i spridningsmodellerna. Spridningsmönstret, och därmed riskerna är också starkt beroende av det omgivande landskapets topografi, mark-
avänndring, demografska struktur etc vilket gör det angeläget att integrera många faktorer i bedömningarna. Transport av farligt gods är ett näraliggande område där en liknande metodik tillämpas för att bedöma risker vid olyckor. Vissa ansatser, t ex ARIPAR-projektet, har försökt att integrera såväl risker med transport av farligt gods som risker från fasta anläggningar vil-
et innebär att riskbedömningen får en större allmängiltighet.

De metoder som har till ändamål att integrera allmänheten i besluten kan delas in i två frak-
tioner, de som baseras på diskussionsmetoder och sådana som bygger på att datorer kopplas samman i nätverk. Dessa metoder/modeller har det gemensamt att de strävar efter allmän kon-
sensus för en gemensam strategi som alla slutligen stödjer. För att en sådan process skall anses fullkomlig och demokratisk krävs emellertid en mangrann uppslutning. Kanske kan allmänhetens deltagande i den fysiska planeringsprocessen öka i och med att allt fler blir uppkopplade till Internet? Sammansättningen av GIS och multikriteriometoder, beslutsstödande system och spridningsmodeller ger en möjlighet, inte bara att integrera allmänheten i beslut som omfattar risker i rummet, utan också att testa och förstå konsekvenserna av frågeställningar som ”vad händer om man placerar anläggning A intill bostadsområde B?”. Tillväx- gängssättet har starka kopplings till IRRASM:s syfte och ambitioner. De två metoderna bör dock ses som komplement till varandra.

Utvecklingen av metoder och verktyg för att bedöma risker är spridd på flera verksamhetsgre- nar och olika länder. Innebörden i många av de akronymer, figurer, uttryck, metoder etc som behandlats i rapporten bildar därför en arkipelag där det existerar såväl överlappningar som glapp vad beträffar att täcka hela riskdimensionen och allt som är relevant i denna. De meto- der, modeller, verktyg etc som samlats i figur 14.1 täcker sannolikt in den större delen av vad som är önskvärt att beakta i en integrativ regional riskstudie. IRRASM starka sida är ambitionen och förordningen av att koppla samman denna mängd metoder och att göra det metodiskt och på ett adekvat sätt (rätt metod/modell på rätt plats och i rätt sammanhang). Ruta A i figur 14.1 visar på spektrat av risker och händelser som kan inträffa i en region. Ruta B listar de metoder och modeller som diskuteras i rapporten. De två polerna vad beträffar bedömnings- grunder av risker kommenteras med nyckelord i ruta C. I ruta D ges några exempel på teknis- ka hjälpmedel för en rumslig riskanalys.

Det är inte bara de rumsliga nivåerna som är intressanta att diskutera vad avser IRRASM:s tillämplighet. I en del integrativa metoder (företrädesvis sårbarhetsanalysen) utvecklas en systemssyn. Frågan som uppkommer då är naturligtvis hur ett system kan eller lämpligen bör avgränsas med avseende på det robusta samhället. Några möjligheter är:
1. Att se till en enstaka samhällsfunktion (transportsystem, elsystem, etc).
2. Att fokusera på undergrupper till samhället, d v s de ekologiska, sociala och tekniska sys- temer eller mer konkreta som företag.
3. Att försöka se en större del av samhället som ett system. Här kommer vi åter in på frågan hur stor del av samhället som kan betraktas.

En sårbarhetsanalys som fokuserar på det robusta samhället torde teoretiskt sett vara praktiskt användbar på alla tre nivåerna. I avsnitt 14.3 beskrivs några olika forskningsprojekt som fo-
Integrerad regional riskbedömning och riskhantering

kuserar på de olika nivåerna och som utreder sårbarhetsanalysens förmåga att tränga in i dessa.

A. Typ av risker

<table>
<thead>
<tr>
<th>Riskkälla</th>
<th>Utsatt objekt/subjekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturrelaterade</td>
<td>Individer</td>
</tr>
<tr>
<td>Teknologiska</td>
<td>Yrkesrelaterade</td>
</tr>
<tr>
<td>Sociala</td>
<td>Samhälle (funktioner och resurser)</td>
</tr>
<tr>
<td>Livsstilsrelaterade</td>
<td>Miljö</td>
</tr>
<tr>
<td></td>
<td>Egendom</td>
</tr>
</tbody>
</table>

Några ’vanliga’ händelser

- Utsläpp av skadliga ämnen
- Explosioner
- Brand
- Läckage
- Krig
- Epidemier
- Segregation
- Naturkatastrofer
- Fordonsolyckor
- etc

B. Modeller/metoder

Objektbetonad riskbedömning
Säkerhet, miljö, hälsa
Sårbarhetsanalys
Internationella faktorer
Systemsyn
Beslutsmetoder
MCA, GIS och SDSS
Konflikterande riskhändelser
Integrerar även sociala värderingar
Operationell riskhantering
Verktyg för att reducera tid och rum
IRRASM
Viss utvecklad (grovt) metodologi
Spredningsmodeller
Olycksrisker och kontinuerlig spridning, Hot spots, LCA, expertkunskap, allmänhetens åsikter, strategier, flöden, indikatorer, tekniker, tidsperspektiv, topografi, medier, meteorologiska aspekter, positioner i rummet, uttryckssätt (riskkonturer, scenarier, diagram, tabeller etc).

C. Bedömningsgrunder

Riskperception
Tekniskt perspektiv
Kulturella och psykologiska aspekter, fysiska skador – alternativa (mänskliga) riskutsatta värden, endimensionella – multidimensionella bedömningar, experter – allmänhetens inflytande, jämnt, resursallokering, indikatorer, mångfald

D. Tekniska hjälpmedel för rumslig analys

Mjukvara och hårdvara: GIS, GPA, GPS, fjärranalys, telekommunikationer, nätverk, virtual reality.

Fig 14.1 Översikt över de områden som behandlats i rapporten.

Det är också viktigt att konstatera att ingen av de metoder som penetrerats kan se till hela risksituationen med allt vad det innebär (olika risker p.g.a risktyper eller riskernas kvalitativa egenskaper, ekologi, ekonomi, sociala dimensior etc). IRRASM är endast ett ramverk och tillhandahåller inte någon detaljerad metodik för att integrera de olika delarna till ett enstaka mått. Gheorghe & Nicolet-Monnier (1995) anser det inte heller troligt att det går att framställa en enskild riskindikator för att jämföra risker, delvis beroende på att värderingarna inte är globalt rådande och att indikatorerna måste anpassas till platsens unika förutsättningar. En lösning skulle kanske kunna vara att använda flera mått och utifrån dessa försöka ge en mer kvalitativ samlad bedömning.

Den översikt som görs över i vilka miljöer (geografiskt och verksamhetsmässigt) olika IRRASM-ansatser slagit rot visar att det är i relativt värmlände, kanske främst tätbefolkade delar av Europa som Schweiz, Österrike och Holland som detta har skett (i alla fall initialt). Även i de mer glest befolkade, nordiska länderna görs integrativa riskstudier med fokus på risker i rummet i stället för det enskilda objektet. Ser man till endast svenska förhållanden och vad som sker här med avseende på det robusta samhället, är det tydligt att det sker ett arbete ganska jämnt över myndigheter, universitet och forskningsanstalter. Det är viktigt att påpeka att denna studie endast har ambitionen att ge en första översikt över den integrativa regionala riskforskningen och inte att vara uttömmande. För en sådan studie skulle en mer grundläggande inventering behöva genomföras.

14.2 Slutsatser

Som en följd av ovanstående diskussion är det möjligt att dra några slutsatser vad beträffar ett integrativt och rumsligt angreppssätt för att hantera risker och då särskilt med avseende på ett robust/sårbart samhälle:

- IRRASM grundläggande ambitioner är att ta ett brett grepp för att bedöma riskerna, något som ter sig ytterst angeläget i ett komplext och sårbart samhälle där ”allt hänger ihop” och där riskerna kan ge upphov till effekter med en omfattande rumslig spridning.

- Betonningen på en geografisk utgångspunkt erkänner risker som ett rumsligt problem vilket påtagligt förbättrar förutsättningarna att överblicka och bedöma riskerna i landskapet och i slutändan producera ett mått på den samlade riskbilden. Angreppssättet ligger väl i linje med strävan efter att arbeta mot ett robustare samhälle.
- IRRASM gör inte anspråk på att vara en fulländad metod för att bedöma och hantera de problem som hot och risker utgör. I stället förespråkas en mjuk strategi, i form av en vägledning, för riskhantering i samhället. I denna förordnas utnyttjandet av flera metoder, modeller och verktyg för att komma fram till en samlad riskbild i en region. Att integrera olika, ofta specialiserade, metoder/modeller och verktyg med varandra verkar ge möjligheter att nå ett resultat som är något mer än summan av vad som är möjligt att uppnå med de enskilda delarna.

- Vad som avses med samlad riskbild och vad och i vilken omfattning som bör integreras i en undersökning är inte självklart. Ofta inordnas relativt smala (ur ett samhällsperspektiv) metoder under IRRASM (t ex spridningsmodeller och LCA). En IRRASM-studie med avseende på att bedöma riskerna mot samhället, kräver emellertid en mycket bred undersökningsteknik.

- I rapporten har redovisats flera existerande metoder, modeller och exempel på sammankopplingar av tekniska verktyg med integrativa ansatser. Några av de mest framträdande är kanske sårbarhetsanalysen, multikriteriemetoder och GIS. Dessa torde kunna inordnas under rubriken ”lämpliga IRRASM-verktyg” och utnyttjas i mindre eller större omfattning i en IRRASM-studie.

- Emfas läggs på vikten av att integrera allmänheten i bedömning och hantering av risker. Detta är inte bara viktigt för att för att kunna göra en mer fullständig bedömning av riskerna i ett område utan även för att myndigheternas beslut i större projekt inte skall mötas med allmänhetens misstro och skepsis.

- I rapporten nämns några miljöer, ur rent geografiskt avseende, där tankarna på en integrativ och regional riskansats haft sitt ursprung eller där det kommit till uttryck på ett sätt som är intressant för tankarna på att utforma ett robust samhälle. Detta avsnitt kan inte ses som ett manövrerande utan ger närmast fingervisningar om i vilken typ av miljöer (myndigheter, universitet etc) och länder (industrialiserade sådana där det finns en betydelsefull miljömedvetenhet) man kan förvänta sig att hitta IRRASM-ansatser i.

En del av de frågor som ställdes i början på arbetet med rapporten har blivit besvarade men samtidigt har flera nya uppstått. En central fråga är i vad mån och i vilken utsträckning de metoder som granskats (sårbarhetsanalyser, beslutsmetoder etc) egentligen kan användas för att bedöma riskerna mot det robusta samhället. I bilaga 4 ges i en matris en översikt över två olika integrationsdimensioner avseende metodval och funktion eller resurs i samhället. Matrisen är en överskådlig utgångspunkt för den diskussion som sker nedan i avsnitt 14.3 avseende
angelägna forskningsprojekt. Här skisseras huvuddragen i några forskningsprojekt som författarna anser se sig angelägna för att besvara en del av de frågetecken som existerar kring IRRASM’s användbarhet i olika sammanhang.

14.3 Skiss till ett antal FoU-projekt för vidare utredning

14.3.1 Översikt av integrationsdimensioner. Ramprogram för forskning.
Utredningen har påvisat ett fortsatt FoU-behov som sträcker sig över en rad vetenskaps- och ämnesområden. För att i viss mån strukturera FoU-området har vi valt att utgå från bilaga 4 som ger två integrationsdimensioner med en tredje dimension utelämnad. Dimensionerna är:
1. Riskutsatta samhälls- och funktionsområden.
2. Specifika modeller och metoder.
3. Modeller för beslutsfattande, speciellt de sociala dimensionerna.

I bilaga 4 visualiseras de två första dimensionerna. I dimension 3 ingår dels normativa föreskrivande modeller om beslutsfattande, dels beskrivande modeller om människors och gruppers faktiska beslutsfattande i komplexa och dynamiska situationer. Några relevanta termer är t ex beslutsteori, ingenjörsmetoder för beslutsanalys (CCPS 1995), ”supersoft decision theory” (Malmnäs 1995) dynamiskt beslutsfattande och naturalistiskt beslutsfattande, riskperception och riskkommunikation.

En första prioriterad uppgift borde vara att närmare undersöka om metodiken ovan kan tjäna som bas för att producera ett nationellt, sammanhängande forskningsprogram på området integrerad regional riskbedömning. Speciell uppmärksamhet borde ägnas de olika metodernas användbarhet för olika geografiska skalor (grannskap, kommun, regioner). I avsaknad av en sådan utredning skisseras nedan några enstaka FoU-projekt.

14.3.2 Testa någon tillgänglig datormodell på svenska förhållanden vad beträffar olycksrisiker och risker mot hälsa och miljö

Målsättning och grundläggande struktur varierar mellan modellerna. Man kan t ex skilja på mjukvaror som bygger på:
Integrerad regional riskbedömning och riskhantering

a) Integration av GIS, spridningsmodeller GPA (exponering) och effektmodeller.
b) Som a) plus riskberäkning och presentation av risk.
c) Som b) plus integrerat beslutsstöd.

Målsättning: att undersöka den praktiska användbarheten av något eller några av dessa mjukvarusystem och att granska dess kvaliteter och brister. Vad tillför dessa integrativa modeller området riskhantering? Kan de utvecklas till att omfatta andra aspekter som är av intresse för ett robust samhälle? På vilket sätt kan de kombineras med annan rumslig information?

Genomförande: ett antal projekt kan redan definieras:

- Kartlägga marknaden mer noggrant än vad som varit möjligt i denna rapport.
- Strukturer och indatkräv måste identifieras. Bl a måste klargöras om det finns nödvändiga relationsdatabaser och andra typer av indata.
- Om mjukvaran är tillåmplig för svenska förhållanden, göra ett antal tester för att utvärdera resultatet.
- Om mjukvaran inte direkt kan användas för svenska förhållanden, göra ett antal tester och utvärdera resultatet.

Nödvändiga resurser: Beror på mjukvaran, användningsområde (kategorierna a), b) och c) ovan, om olycksartade utsläpp och/eller utsläpp från normal drift ska behandlas etc)

14.3.3 Utredning av beslutsmodeller framför allt MADM.

Målsättning: Att ge en översikt av existerande MCA-metoder för beslutsstöd och utarbeta en handledning för deras praktiska användning.

Genomförande: Projektet bör inledas med att ett antal praktiska beslutssituationer inom ÖCB:s arbetsområde definieras med avseende på bl a

- Tillgängliga resurser att genomföra analysen.
- Problem-komplexitet.
- Beslutets betydelse.
- Antalet beslutsfattare.
- Behov av kvantifiering.

I en fas två görs en genomgång och utvärdering av existerande MADM eller MCA-metoder med syfte att med utgångspunkt från karakteriseringen av beslutsteorin ovan, välja en optimal utvärderingsmetod som stöd för beslutsfattande.

14.3.4 Sårbarhetsanalyser för några tekniska system

Bakgrund: I avsnitt 5 beskrevs huvuddragen till en sårbarhetsanalys av complexa tekniska system. Första steget är identifiering av riskfaktorer som påverkar sårbarheten. Miljöfaktorer, sociala faktorer infrastrukturfågor, juridiska faktorer, marknadsfaktorer, etc räknas som yttre
faktorer. Som inre sådana räknas tekniska fel, inverkan av organisation och administration, underhåll, bemanning etc. Varje riskfaktor utgör startpunkten för ett antal skeden, scenarier. Frekvensen och skadeomfång uppskattas kvalitativt liksom inverkan av olika skydd. För avgörande scenarier görs en kvantifierad uppskattning av frekvens och skada (på människa, miljö, egendom och affärsrörelse enligt en strukturerad skala). Resultatet blir ett totalt skadeindex för varje scenario.

Målsättning: Utföra en sårbarhetsanalys för ett viktigt tekniskt system av typen elförsörjning.

Genomförande: Välja anläggning, samla indata, modellera systemet, identifiera hot- och riskfaktorer, utveckla scenarier, rangordna risknivåer, genomföra kvantitativ analys och eventuellt föreslå riskreducerande åtgärder.

14.3.5 Utreda scenariobaserade sårbarhetsanalysers förmåga att granska olika system

Bakgrund: I rapporten har sårbarhetsanalyser framställts som på flera sätt vitala i jämförelse med riskanalyser, speciellt i samband med att undersöka riskerna mot det sårbara/robusta samhället. Tre analysmetoder har beskrivits; sårbarhetsmatriser (riskmatriser med ett brett perspektiv), nyckeltal i kombination med ett naturekonomiskt redovisningsprogram och scenariobaserad analys. Som redogjorts för ovan har den scenariobaserade analysmetoden utvecklats för att undersöka sårbarheten i tekniska system. En fråga är emellertid om analysen även skulle kunna tillämpas på andra samhällssystem. Det breda angreppssättet torde i så fall vara en tillgång.

Målsättning: Det ter sig angeläget att prova scenariobaserad sårbarhetsanalys på övriga dimensioner av det robusta samhället, d.v.s förutom det tekniska även:

- Sociala system för att undersöka sårbarheten/robustheten i relationer och organisation
- Ekologiska system och därför fokusera på resursuttag och flöden och kretslopp.

14.3.6 Jämförelse mellan olika metoder att rangordna risk och sårbarhet: PRA – indexmetoder – sårbarhetsanalys

Bakgrund: I rapporten har vi försökt redovisa i grova drag tre riskbedömningsmetoder med potentiell användning inom området integrerad regional riskbedömning; Probabilistisk analys (PRA), sårbarhetsanalys och indexmetoder. De tre metoderna uppvisar helt skilda egenskaper med avseende på praktisk användning, fördelar, nackdelar och begränsningar.

Målsättning: På sid 42-43 i ÖCB-skriften ”Robusthet i den fysiska miljön” (Berglund (red) 1998) redovisas för Malmöregionen ett stort antal riskfaktorer i en riskmatris och ett diagram redovisar ett antal förslag till prioritering av riskreducerande åtgärder. Dessa diagram har skapats med kvalitativa bedömningar som grund. Målsättningen är att för några av de dominerande riskfaktorerna och de prioriterande åtgärderna se i vilken utsträckning den rent kvalita-
Integrerad regional riskbedömning och riskhantering
tiva analysen och beslutsunderlaget kan förbättras med användning av ovan tre nämnda meto-
der.

Genomförande: De tre metoderna jämförs bl a med avseende på:
• Tillgång till data, kvalitet på indata.
• Arbetsinsats vid genomförande av en analys.
• Praktisk användbarhet och nytta av analysresultatet.
• Möjlighet att kvalitetsäkra analysprocessen med avseende på omfattning, fullständighet,
 logisk stringens (konsistens), kontrollbarhet, dokumentation.

14.3.7 Hur kan ett IRRASM-angreppssätt tillämpas i en region?
Bakgrund: IRRASM är tänkt att vara ett instrument för att bedöma och hantera riskfrågor
som kräver ett regionalt och integrativt förhållningssätt. En mängd metoder, modeller och
verktyg som kan användas för detta har presenterats i rapporten. De olika tillvägagångssätten
har emellertid olika egenskaper och användningsområden och kan/bör tillämpas på olika pro-
blemtyper vars geografiska omfattning varierar. Flera frågor uppstår i sammanhanget och
kräver ett svar. Var går t ex gränsen mellan när det är lämpligt att använda en riskanalys re-
spektive sårbarhetsanalys? I vilka sammanhang kan man använda en spridningsmodell i samband
med det robusta samhället?

Målsättning: Att identifiera risker och sårbara objekt/subjekt samt undersöka vilka problem
(d v s hot och risker) som kräver ett regionalt integrativt tillvägagångssätt och vilka som kan
lösas på en lokal nivå. En viktig uppgift blir att försöka definiera vilka metoder och verktyg
som är tillämpbara på de olika problemen och i vilka sammanhang.

Genomförande: Genom att konkret utgå från en region, t ex Öresundsregionen, och inventera
de problem och risker som föreligger här borde det vara möjligt att finna s k hotspots med
olika hög komplexitetsgrad och problematik. En hot spot karakteriseras av att det är ett områ-
de där det är sannolikt att det kan ske en olycka och att denna i så fall ger allvarliga konsek-
venser. Det är alltså ett samspeel mellan riskkälla och utsatt objekt/subjekt. För varje hotspots
kan frågan ställas om det är ett problem som kräver en IRRASM-strategi för optimal hante-
ing och vilka verktyg, modeller och metoder som är tillämpliga.

Ett tidsgeografiskt tillvägagångssätt skulle kunna utvecklas där det är möjligt att följa risk-
källa och utsatta objekt/subjekt i tid och rum. Genom att lokalisera varje risktyp (d v s riskkällans
position och dess effektens utbredning såväl som de utsatta objekten/subjektens läge)
för sig i rummet och registrera dem i olika GIS-lager blir potentialen att modellera med olika
risksituationer och simulera olika förlopp omfattande.
Bilaga 1 Kvantitativa riskbedömningar

I figurerna 3.2 och 3.3 åskådliggjordes skillnaden i tillvägagångssättet för att bedöma olycksrisker och miljö- och hälsorisker. Nedan följer nu en genomgång av beräkningssättet för olycksrisker och hur bedömningen av miljö- och hälsorisker går till.

A. Beräkning av olycksrisker

Presentationen av de båda andra sättet nedan bygger på skriften Guidelines for Chemical Process Quantitative Risk Analysis (Center for Chemical Process safety of the American Institute of Chemical Engineers 1989).

14.3.8 Individuella riskmått

Punkter som uppvisar lika stora värden sammanbinds av linjer, så kallade riskkonturer. På så vis kan särbara punkter i rummet runt en riskkälla snabbt identifieras.

Vid beräkning av individuell risk i rummet utgår man ifrån att det är möjligt att summera verknings från alla incidenter. Den totala risken i varje punkt är därmed lika med summan av alla individuella risker som t ex härstammar från en anläggning så att:

\[
IR_{x,y} = \sum_{i=1}^{n} IR_{x,y,i}
\]

\(IR_{x,y} = \) den totala individuella risken för dödsfall vid en geografisk punkt X, Y (möjliga dödsfall per år)
\(IR_{x,y,i} = \) den individuella risken för dödsfall vid en geografisk punkt X, Y från skadeverkningsfall i (möjliga dödsfall per år).
\(n = \) det totala antalet skadeverkningsfall som berörs i analysen.

\(IR_{x,y,i} = \) f\(i\)p\(i\)

\(f_i = \) frekvensen av skadeverkningsfall i, (mättet härstammar från en genomförd frekvensanalys).
\(p_i = \) sannolikheten att skadeverkningsfall i skall resultera i ett dödsfall vid punkten X, Y (från konsekvens- och effektmodeller).

Figur B1.A1: Exempel på individuell riskkonturkarta
Källa: Center for Chemical Process safety of the American Institute of Chemical Engineers 1989
Integrerad regional riskbedömning och riskhantering

\[f_i = F_i p_{O,i} p_{OC,i} \]

\[F_i = \text{frekvens av incident } I, \text{ vars skadeverkningsfall är } i. \]

\[p_{O,i} = \text{sannolikheten att skadeverkningen inträffar givet att incident } I \text{ har inträffat} \]

\[p_{OC,i} = \text{sannolikheten skadeverkningsfall } i \text{ inträffar givet att förelöpande incident } I \text{ inträffar och att skadeverkningen svarar mot skadeverkningsfallet } i. \]

Beräkningen av \(f_i \) kräver en värdering av skadeverkningen och sannolikheten för skadeverkningsfallen \((p_{O,i}, p_{OC,i}) \) givet att incident \(I \) inträffar. När väl \(f_i \) beräknats och plottats ut i kartan kan så själva riskkonturerna definieras.

14.3.9 Samhällsrisker

Samhällsrisk är ett riskmått för en grupp människor, ofta uttryckt som en frekvensfördelning av ett flertal olyckshändelser. Beräkning av samhällsrisk kräver samma information som för individuell risk men dessutom kunskap om befolkningen kring den aktuella riskkällan (verksamhetstyp, dag/nattbefolkning etc). Antalet människor som drabbas av varje skadeverkningsfall ges av:

\[N_i = \sum_{x,y} P_{x,y} p_{f,i} \]

\[N_i = \text{antalet dödsfall som kommer av skadeverkningsfall } i \]

\[P_{x,y} = \text{antalet människor vid koordinaterna } X, \ Y \]

\[p_{f,i} \text{ har definierats ovan} \]

Antalet individer som överhuvudtaget berörs av alla skadeverkningsfall måste också fastställas. Detta resulterar i en lista över alla skadeverkningsfall där var och en tillskrivs en frekvens och det berörda antalet individer. Informationen kan sedan användas för att rita en F/N-kurva (Frequency/Number).

\[F_N = \sum_i F_i \text{ för alla skadeverkningsfall } i \text{ där } N_i \geq N \]

\[F_N = \text{frekvensen av alla skadeverkningsfall som berör } N \text{ antal, eller fler, människor} \]

\[F_i = \text{frekvensen av skadeverkningsfall } i \]

\[N_i = \text{antalet människor som berörs av skadeverkningsfall } i \]

Resultatet är en uppsättning data som ger \(F_N \) som en funktion av \(N \). Detta förhållande kan sedan plottas i en s k F/N-kurva (se figur B1.A2). Beräkning av samhällsrisker kan vara mycket tidskrävande eftersom dödsfall måste uppskattas för varje skadeverkningsfall.

Individuell risk och samhällsrisk är egentligen olika presentationsformer av samma underliggande kombination av händelsefrekvens och konsekvens. Följande exempel belyser skillna-

Figur B1.A2 Exempel på F/N-kurva
Källa: SRV 1998
Bilaga 1

den mellan de två måtten:

I en kontorsbyggnad som är belägen intill en kemisk anläggning arbetar 400 människor under kontorstid och en väktare under övriga tider. Om sannolikheten för att en händelse skall orsaka ett dödsfall i kontorsbyggnaden är konstant under dygnet är varje individ i den byggnaden utsatt för en viss individuell risk. Denna individuella risk är oberoende av antalet människor som är närvarande, den är likadan för var och en av de 400 människorna i byggnaden under kontorstid och för den ensamme väktaren under övriga tider. Den samhälleliga risken är emellertid betydligt högre under kontorstid än under de tider då en ensam person berörs.

B. Hälso- och miljörisker relaterade till exponering för kemikalier

I det första steget försöker man **identifera** de skadliga effekter på hälsa och miljö som t ex en kemisk substans kan ge upphov till samt under vilka förhållanden detta sker. Sådan information kan ges av experiment i laboratoriestudier. En viktig fråga man ställer sig är huruvida de data man får fram även kan appliceras på andra populationer under liknande exponeringsförhållanden.

I steget två görs en **effektbedömning** eller en **dos-respons bedömning** av förhållandet mellan en dos (grad av exponering) av ett ämne och hur allvarlig effekt detta ger. Det är en kvantitativ beskrivning där tidsförloppet har stor betydelse. Emedan exponering för höga koncentrationer under kort tid kan ge upphov till akuta effekter är det möjligt att utsatthet för samma ämne under längre tid och i låga koncentrationer kan ge cancer.

I steget tre görs en **exponeringsbedömning** genom att mäta upp exponeringskonzentrationer då den kemiska substansen släppts ut. I en sådan bedömning ingår att ta hänsyn till flera faktorer som berör själva utsläppet för att få kännedom om vilka koncentrationer (doser) människor eller miljöområden kan komma att utsättas för. Häri ingår också att beskriva de utsatta subjektens/objektens storlek, egenskaper och varaktigheten av exponeringen. Osäkerheten i exponeringsbedömningen är oftast mycket stor. Detta har sin grund i brist på information, dels om emissionsfaktorer under kemikalieproduktion (punktvisa utsläppskällor) och dels de emissioner som kommer från användningen av kemikalier i olika produkter. Den stora geografiska, komplexa variationen vad beträffar klimat, hydrologiska faktorer, geologi och strukturerna i ekosystemen är också orsaker som bidrar till osäkerheten.

I steget fyra karakteriseras risken vilket innebär att en bedömning görs av konsekvenserna och av de skadliga effekterna på en befolkningsgrupp eller i ett miljöområde (luft vatten etc) till följd av en verklig eller prognosticerad exponering för en viss substans. I detta steget kan även en riskuppskattning utföras (d v s sannolikheten kvantifieras). Den frekvensmetod som används för att bedöma säkerhetsrisken är inte tillämplig här (Suter II 1993). Det är omöjligt att upprepa exakt likadana exponeringssituationer av populationer eller ekosystem för att en bedömare skall kunna bestämma en frekvens eller effekt, eftersom situationerna är för komplexa. Den form av sannolikhet som används i de ekologiska riskbedömningarna är istället kreditibilitet (att likställa med sannolikhet av en viss väderlek i väderprognoser). Givet osäkerhet i
data, miljöns stokasticitet och precisionen i antaganden i modellen kan man säga att det finns en viss uppskattad sannolikhet (credibility) av en effekt. Med hjälp av olika statistiska metoder och felanalyser i matematiska modeller är det möjligt att framställa sannolikhetsdensitetsfunktioner för exponering och effekt. I en sådan funktion visas den sammanlagda sannolikheten för att en viss koncentration skall påträffas i miljön givet en särskild bedömning av det rumsliga och tidsmässiga mönstret av ett utsläpp från en eller flera källor och att en effekt skall inträffa vid den koncentrationen (Suter II 1993).

Riskkarakteriseringen avslutar bedömningsstegen och och därefter påbörjas eventuellt riskreducerande åtgärder. Osäkerheten i bedömningen gör att dessa steg inte kan utföras mekaniskt och stelt utan här måste ett samspel ske mellan vetenskap och politiska beslutsfattare.
Bilaga 2 Praktisk användning av AHP-metoden

AHP bygger på parvisa jämförelser mellan komponenterna. Genom att värdera komponenterna (t ex för två alternativ A och B) inbördes erhålls en gradering mellan dem, t ex med en skala från 1 – 5 där 1 innebär att A är lika viktigt som B och 5 att A är mycket viktigare än B.

I det första steget görs en parvis jämförelse (se matris 1) mellan de olika kriterierna för att vikta dem så som sammanfaller med beslutsfattarens preferenser.

Matris 1: Beslutsfattarens preferensvikter för de olika kriterierna.

<table>
<thead>
<tr>
<th></th>
<th>Kostnad</th>
<th>Tid</th>
<th>Miljöhänsyn</th>
<th>Bekvämlighet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostnad</td>
<td>1</td>
<td>1/5</td>
<td>1/2</td>
<td>1/3</td>
</tr>
<tr>
<td>Tid</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1 + 2/3</td>
</tr>
<tr>
<td>Miljöhänsyn</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
<td>2/3</td>
</tr>
<tr>
<td>Bekvämlighet</td>
<td>3</td>
<td>0.6</td>
<td>1,5</td>
<td>1</td>
</tr>
<tr>
<td>Summa</td>
<td>11</td>
<td>2,3</td>
<td>5</td>
<td>3 + 2/3</td>
</tr>
</tbody>
</table>

Figur: B2.1 Åskådliggörande av hierarkin i exempel ovan
Därefter görs relativa prioriteringar av kriterierna. I det här fallet med en approximativ metod men det är även möjligt att använda ett geometriskt medelvärde.

Matris 2: Normaliserad parvis jämförelse

<table>
<thead>
<tr>
<th></th>
<th>Kostnad</th>
<th>Tid</th>
<th>Miljöhänsyn</th>
<th>Bekvämlighet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostnad</td>
<td>1/11 = 0,09</td>
<td>1/5/2,3 = 0,09</td>
<td>1/2/5 = 0,1</td>
<td>1/3 / 2/3 = 0,09</td>
</tr>
<tr>
<td>Tid</td>
<td>5/11 = 0,45</td>
<td>1/2,3 = 0,43</td>
<td>2/5 = 0,4</td>
<td>1 2/3 / 3 2/3 = 0,45</td>
</tr>
<tr>
<td>Miljöhänsyn</td>
<td>2/11 = 0,18</td>
<td>1/2/2,3 = 0,38</td>
<td>1/5 = 0,2</td>
<td>2/3 / 3 2/3 = 0,18</td>
</tr>
<tr>
<td>Bekvämlighet</td>
<td>3/11 = 0,27</td>
<td>0,6/2,3 = 0,26</td>
<td>1,5/5 = 0,3</td>
<td>1/ 3 2/3 = 0,27</td>
</tr>
</tbody>
</table>

Kostnad: \(0,09 + 0,09 + 0,1 + 0,09 = 0,09\)

Tid: \(0,45 + 0,43 + 0,40 + 0,45 = 0,43\)

Miljöhänsyn: \(0,18 + 0,38 + 0,20 + 0,18 = 0,24\)

Bekvämlighet: \(0,27 + 0,26 + 0,30 + 0,27 = 0,27\)

En jämförelse görs sedan mellan de olika alternativen med avseende på de olika kriterierna (se matris 3).

Matris 3: Prioritering av varje alternativ:

<table>
<thead>
<tr>
<th>Kostnad</th>
<th>Bil</th>
<th>Buss och cykel</th>
<th>Tåg och buss</th>
<th>Prioritering (geometrisk metod)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1/3</td>
<td>1/2</td>
<td>(11/31/2)^{1/3} = 0,55 \rightarrow 0,16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>(312)^{1/3} = 1,82 \rightarrow 0,54</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/2</td>
<td>1</td>
<td>((21/21)^{1/3} = 1 \rightarrow 0,30</td>
</tr>
<tr>
<td>Tid</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>((123)^{1/3} = 1,82 \rightarrow 0,61</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1</td>
<td>1/3</td>
<td>((1/211/3)^{1/3} = 0,17 \rightarrow 0,06</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>3</td>
<td>1</td>
<td>((1/331)^{1/3} = 1 \rightarrow 0,33</td>
</tr>
<tr>
<td>Miljöhänsyn</td>
<td>1</td>
<td>1/4</td>
<td>1/4</td>
<td>((11/41/4)^{1/3} = 0,40 \rightarrow 0,11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>((411)^{1/3} = 1,59 \rightarrow 0,44</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>((411)^{1/3} = 1,59 \rightarrow 0,44</td>
</tr>
<tr>
<td>Bekvämlighet</td>
<td>1</td>
<td>2</td>
<td>4/3</td>
<td>((124/3)^{1/3} = 1,39 \rightarrow 0,45</td>
</tr>
<tr>
<td></td>
<td>0,5</td>
<td>1</td>
<td>0,75</td>
<td>((0,510,75)^{1/3} = 0,72 \rightarrow 0,23</td>
</tr>
<tr>
<td></td>
<td>0,75</td>
<td>4/3</td>
<td>1</td>
<td>((0,754/31)^{1/3} = 1 \rightarrow 0,32</td>
</tr>
</tbody>
</table>

126
Det är därmed möjligt att sätta in prioriteringarna i en matris (matris 4) och genom att multiplicera denna med de relativa prioriteringarna av kriterierna (matris 5) får man reda på hur väl de olika alternativen tillfredsställer beslutsfattaren med avseende på de kriterier som ställts upp.

<table>
<thead>
<tr>
<th>Matris 4</th>
<th>Matris 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kostnad</td>
</tr>
<tr>
<td>Bil</td>
<td>0,16</td>
</tr>
<tr>
<td>Buss och cykel</td>
<td>0,54</td>
</tr>
<tr>
<td>Tåg och buss</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Detta innebär för:

Bil: 0,42

Buss och cykel: 0,24

Tåg och buss: 0,36

I enlighet med de värderingar beslutsfattaren fastställt är det nu tydligt att denne bör köra bil mellan Lund och Malmö (alternativet med det högsta värdet).
Integrierad regional riskbedömning och riskhantering
Bilaga 3 Översikt över verktyg för bedömning av olika alternativ i en beslutsprocess

| Bilaga 3 Översikt över verktyg för bedömning av olika alternativ i en beslutsprocess |
|---|---|---|---|---|---|---|---|---|---|---|
| Accident Investigation | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Analytical Hierarchy Process | | | | | | | | | | |
| Animal Research | | | | | | | | | | |
| Bayesian Probability Methods | | | | | | | | | | |
| Bioassay | | | | | | | | | | |
| Biological Monitoring | | | | | | | | | | |
| Bond Duct | | | | | | | | | | |
| Bright Lines | | | | | | | | | | |
| Case-Control Studies | | | | | | | | | | |
| Classical Probability Methods | | | | | | | | | | |
| Confidence Interval | | | | | | | | | | |
| Consequence Model | | | | | | | | | | |
| Contingent Ranking | | | | | | | | | | |
| Contingent Valuation | | | | | | | | | | |
| Controlled Human Exposures | | | | | | | | | | |
| Cost-Benefit Analysis | | | | | | | | | | |
| Cost-Effectiveness Analysis | | | | | | | | | | |
| Crash Simulations | | | | | | | | | | |
| Decision Analysis | | | | | | | | | | |
| Decision Trees | | | | | | | | | | |
| Discharge Models | | | | | | | | | | |
| Dose-Response Model | | | | | | | | | | |
| Dynamic Models | | | | | | | | | | |
| Ecological Models | | | | | | | | | | |
| Ecological Impact Assessment | | | | | | | | | | |
| Epidemiological Studies | | | | | | | | | | |
| Event Trees | | | | | | | | | | |
| Expected Net Present Value | | | | | | | | | | |
| Exposed Utility | | | | | | | | | | |
| Expected Value | | | | | | | | | | |
| Expert Systems | | | | | | | | | | |
| Exponential Distribution | | | | | | | | | | |
| Exposure Route Models | | | | | | | | | | |
| Exposure Tests | | | | | | | | | | |
| Extrapolation Methods | | | | | | | | | | |
| Fatal Accident Rate | | | | | | | | | | |
| Fate Models | | | | | | | | | | |
| Fault-Trees | | | | | | | | | | |
| Field Tests | | | | | | | | | | |
| Fluid Site Monitors | | | | | | | | | | |
| Gaussian Plume Model | | | | | | | | | | |
| Geographic Information Systems | | | | | | | | | | |
| Harvest Models | | | | | | | | | | |
| Hazard Assessment | | | | | | | | | | |
| Hazard Index | | | | | | | | | | |
| Health Surveillance | | | | | | | | | | |
| Hypothesis Testing | | | | | | | | | | |
| Index of Bioass Integrity | | | | | | | | | | |
| Individual Risk | | | | | | | | | | |
| Influence Diagrams | | | | | | | | | | |
| Inflage Programs | | | | | | | | | | |
| Integrated Assessment | | | | | | | | | | |
| Laboratory Exposure Tests | | | | | | | | | | |

Figur B3.1 Översikt över verktyg för bedömning av olika alternativ i en beslutsprocess

Källa: Merkhoffer (1999)

Anmärkning: Iffyld ruta markerar att verktyget är användbart för ifrågavarande del i beslutsprocessen.
Bilaga 4 Matris över två integrationsdimensioner

<table>
<thead>
<tr>
<th>Riskutsatta samhälls- och funktionsområden</th>
<th>Metoder/modeller eller andra verktyg</th>
<th>Integrationsdimension 1</th>
<th>Integrationsdimension 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Teknisk försörjning och infrastruktur</td>
<td>A. Objektsbetonad riskanalys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Transporter och transportanläggningar</td>
<td>B. Sårbarhetsanalys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Livsmedelsförsörjning</td>
<td>C. Spridningsmodeller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Hantering av farliga ämnen</td>
<td>D. Operationell riskhantering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Sjukvård och omsorg</td>
<td>E. Beslutsmetoder (GIS, MCA och SDSS m fl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Beslut- och utvecklingscentra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Bebyggelsestruktur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Grönstruktur och naturmiljö</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Kulturmiljö</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Näringsstruktur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Sociala och kulturella förhållanden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Mark och byggnader</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integrierad regional riskbedömning och riskhantering
Bilaga 5 Översikt över några spridningsmodeller

Nedan ges en översikt över ett antal spridningsmodeller som hjälper till att beräkna risker från fasta anläggningar till följd av olyckor eller kontinuerlig drift.

GRIBS – integrerar olika databaser och tar fram information för anläggningar som handhar farliga kemikalier. Syftet är att vara en del av det allmänna riskinformationssystemet. Informationen baseras i huvudsak på kvalitativa klassificeringar av de farliga ämnena (Fedra 1998).

AirPEx, Air Pollution Exposure, (Freijer m fl 1998) är en modell som bedömer människors exponering av luftföroreningar genom inandning. Modellen kvantifierar exponering av individer och populationer genom att använda data över luftkvalitetens variationer i tid och rum och aktivitetsmönster. Att se till aktivitetsmönster har visat sig vara mycket betydelsefullt för att göra en korrekt bedömning. En viktig komponent är möjligheten att samtidigt analysera sociodemografiska förhållanden. Detta gör att det går att se vilka grupper som är mer utsatta än andra.

Inter-Clair är exempel på en ”universalmodell” som kan appliceras på en mängd olika föroreningstyper och spridningsmönster. Den är anpassad för ytor å 400 x 400 km och har använts i en mängd olika sammanhang (Gheorghe 1995).

HEGIS, Health and Environment Geographic Information System, (Kuchuk m fl 1998) är ett verktyg för att identifiera ”hot spots” vad beträffar miljömässig degradering och/eller dålig
Integrerad regional riskbedömning och riskhantering

I Holland har försök gjorts med att utifrån flera utsläppskällor beräkna den individuella risken en person löper då hon exponeras för miljömässiga föroreningar i ett fiktivt rutnät (Pruppers m fl 1996). Risken beräknades utifrån flera aspekter som politiker valt att skydda invånarna ifrån såsom mortalitet och sjukdomsuppkomst. En slutsats var att risken från stora olyckor och att utsättas för oväsen var störst på det lokala planet medan risker till följd av strålning och ämnen var mer spridd. Den kollektiva risken kunde härledas ur den individuella risken. Vad som återstår av detta arbete är att samla alla riskerna i en karta och att utveckla en viktare metod.

HITERM är ett projekt inom Eu-programmet ESPRIT’s High-Performance and Networking, Decision Support Applications. Med hjälp av kraftfulla datorer och arbetstationer försöker man uppnå lösningar på komplexa simuleringar av olycksutsläpp av farliga ämnen i olika medier i en hastighet som är bättre än realtid. Målet är att bygga upp ett interaktivt beslutssupportsystem för akut planering och hantering.
Referenser

Tryckta källor

Berglund B (red) (1994): Den oslagbara staden. Överstyrelsen för civil beredskap, Stockholm

Berglund B (red) (1997): Robust samhälle – forskning och praktisk verklighet. Överstyrelsen för civil beredskap, Stockholm

Berglund B (red) (1998): Robusthet i den fysiska miljön. Överstyrelsen för civil beredskap, Stockholm

Bernhardsen T (1992): Geographic Information Systems. VIAK IT, Arendal

Det Norske Veritas Industry AS
Integrerad regional riskbedömning och riskhantering

Integrerad regional riskbedömning och riskhantering

Simon H (1960): The New Science of management Decision

Referenser

Strömgren M (1997): Riskhantering och fysisk planering. Räddningsverket, Karlstad

Internet

Colorado State University (1999-10-14) http://www.ciesin.colostate.edu/argis/

Det norske veritas (2000-02-12) http://www.dnv.com

Direktoratet för sivil beredskap (2000-02-12) http://www.dnv.com

Direktoratet för sivil beredskap http://www.dsb.no 1999-12-23

Direktoratet för sivil beredskap (2000-02-22)
http://www.dsb.no/nivaa_tre_english/vulnerability_analyses_and-super.htm

Environmental Protection Agency (1999-10-12) http://www.epa.gov/oiamount/tips/risktip.htm
Integrerad regional riskbedömning och riskhantering

Environmental Software and Services GmbH (1999-08-16) http://www.ess.co.at/

Försvarets forskningsanstalt, FOA (2000-02-09) http://www.foa.se

Försvarets forskningsanstalt, FOA (2000-02-09) http://www.risknet.foa.se/about1.htm

Försvarshögskolan (2000-03-02) http://130.244.126.171/fhs/forsk/index.html

Lunds universitet, Institutionen för kulturgeografi och ekonomisk geografi (2000-03-14)
http://www1.ldc.lu.se/kulekggeo/forska/projekt/sarbara.htm

Miljöförvaltningen Malmö kommun (1999-12-15) http://www.miljo.malmo.se/mark.htm

National institute of public health and the environment (1999-09-17)

Norges forskningsråd (2000-02-22)
http://www.forskningsradet.no/bibliotek/forskning/199704/1997041001.html

Räddningsverket (2000-02-09) http://www.srv.se

Umeå universitet - Safari (2000-03-02) http://info.adm.umu.se/SAFARI/

University of Leeds, Centre for Computational Geography (2000-03-01)
http://www.ccg.leeds.ac.uk/mce/mce-intro.htm

Uppsala universitet, sociologiska institutionen (2000-03-02) http://mail.soc.uu.se/research/presentation.html